945 research outputs found

    Genetic Polymorphisms of Osteopontin in Association with Ankylosing Spondylitis in a Chinese Population

    Get PDF
    Purpose: To determine the association of osteopontin (OPN) polymorphisms with ankylosing spondylitis (AS).Methods: A total of 120 cases diagnosed with AS and 106 age- and sex-matched healthy controls were recruited. All the patients were human leukocyte antigen (HLA)-B27 positive. Three single nucleotide polymorphisms were genotyped using direct sequencing.Results: The T allele at -443 SNP had significantly higher frequency in AS patients (0.1875) than the controls (0.1085, p < 0.01). The rate of CT+TT genotype in AS patients was significantly higher than those with CC genotype compared with the control (p < 0.01).Conclusion: SNP at -443 of OPN gene can serve as a candidate genetic marker to evaluate the risk of AS, thus indicating that subjects who carry T allele have a significantly higher risk of developing AS.Keywords: Genetic polymorphism, Ankylosing spondylitis, Osteopontin, Sequencin

    Discussion on the teaching mode of higher vocational nursing specialty based on CDIO model

    Get PDF
    基于CDIO模式下高职院校护理专业教学模式的探讨是本文的研究核心。CDIO是国际高等工程教育改革的最新成果,兴起于2000年,国内高校在引入CDIO 模式改革过程中,出现一些问题或疑惑是在所难免的,所以CDIO模式是高等教育院校,尤其是高职院校教师对陈旧教学模式的一次大胆尝试。CDIO模式能够促使教师反思已固有的习惯性教学理念,从而在教学过程中改变教学方法,使教师的教学工作能力得以很大程度的提高,同时鼓励学生的学习行为趋于自主性,培养其自身的专业能力、个人发展能力、人际交往能力和系统创新能力等职业综合能力。Discussion on the teaching mode of higher vocational nursing specialty based on CDIO model is the core of this study. CDIO is the latest achievement in the reform of the international higher education of engineering and has been thrived since 2000. There are some inevitable problems when domestic universities introduced and innovated the CDIO mode. Therefore the CDIO model is a bold attempt for the institutions of higher education, especially higher vocational college teachers. The CDIO mode drives teachers to reflect on the existed teaching philosophy, and therefore enables them to change teaching methods in the teaching process and improve their teaching capacity tremendously. Meanwhile, it also encourages students to learn automatically and cultivate their comprehensive abilities such as professional capability, development capability, interpersonal skills, innovation ability, etc

    Gender-specific association of MSA2756G with hypertension in patients attending a health facility in Ningxia Province, China

    Get PDF
    Purpose: To investigate the distribution of methionine synthase A2756G (MSA2756G) in the hypertensive patients in northwest Chinese population.Methods: A total of 378 unrelated hypertensive patients attending Ningxia Peoples Hospital, Ningxia Province, China, were recruited for this study. We analyzed genotype by amplication - created restriction sites (ACRS) and polymerase chain reaction - restrict fragment length polymorphism (PCR - RFLP) in hypertensive patients, and inspected the relation of the genotype with hypertension by χ2 and t test.Results: The frequency of G allele was 10.25 % in the control group and 14.04 % in hypertension group; it was not statistically different (p > 0.05). In the male group, the frequency of allele G was 11.50 % in control group, and 8.79 % in hypertension group. There was no significant difference between control and hypertension groups (p > 0.05). In the female group, the frequency of allele G was 9.00 %, in control and 19.54 % in hypertension group (p < 0.05), while in the hypertension group, allele G was 8.79 % in males which is significantly lower (p < 0.05) than in females (19.54 %) .Conclusion: Allele G of MSA2756G is a risk factor for hypertension in female in this Chinese population of this study.Keywords: Hypertension, Methionine synthase, Polymorphism, Gender, Amplification-created restriction sites, Allele G, MSA2756

    Impact of diurnal temperature fluctuations on larval settlement and growth of the reef coral Pocillopora damicornis

    Get PDF
    Diurnal fluctuations in seawater temperature are ubiquitous on tropical reef flats. However, the effects of such dynamic temperature variations on the early stages of corals are poorly understood. In this study, we investigated the responses of larvae and new recruits of Pocillopora damicornis to two constant temperature treatments (29 and 31 degrees C) and two diurnally fluctuating treatments (28-31 and 30-33 degrees C with daily means of 29 and 31 degrees C, respectively) simulating the 3 degrees C diel oscillations at 3m depth on the Luhuitou fringing reef (Sanya, China). Results showed that the thermal stress on settlement at 31 degrees C was almost negated by the fluctuating treatment. Further, neither elevated temperature nor temperature fluctuations caused bleaching responses in recruits, while the maximum excitation pressure over photosystem II (PSII) was reduced under fluctuating temperatures. Although early growth and development were highly stimulated at 31 degrees C, oscillations of 3 degrees C had little effects on budding and lateral growth at either mean temperature. Nevertheless, daytime encounters with the maximum temperature of 33 degrees C in fluctuating 31 degrees C elicited a notable reduction in calcification compared to constant 31 degrees C. These results underscore the complexity of the effects caused by diel temperature fluctuations on early stages of corals and suggest that ecologically relevant temperature variability could buffer warming stress on larval settlement and dampen the positive effects of increased temperatures on coral growth

    Cancer-induced bone pain sequentially activates the ERK/MAPK pathway in different cell types in the rat spinal cord

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies have demonstrates that, after nerve injury, extracellular signal-regulated protein kinase (ERK) activation in the spinal cord-initially in neurons, then microglia, and finally astrocytes. In addition, phosphorylation of ERK (p-ERK) contributes to nociceptive responses following inflammation and/or nerve injury. However, the role of spinal cells and the ERK/MAPK pathway in cancer-induced bone pain (CIBP) remains poorly understood. The present study analyzed activation of spinal cells and the ERK/MAPK pathway in a rat model of bone cancer pain.</p> <p>Results</p> <p>A Sprague Dawley rat model of bone cancer pain was established and the model was evaluated by a series of tests. Moreover, fluorocitrate (reversible glial metabolic inhibitor) and U0126 (a MEK inhibitor) was administered intrathecally. Western blots and double immunofluorescence were used to detect the expression and location of phosphorylation of ERK (p-ERK). Our studies on pain behavior show that the time between day 6 and day 18 is a reasonable period ("time window" as the remaining stages) to investigate bone cancer pain mechanisms and to research analgesic drugs. Double-labeling immunofluorescence revealed that p-ERK was sequentially expressed in neurons, microglia, and astrocytes in the L4-5 superficial spinal cord following inoculation of Walker 256 cells. Phosphorylation of ERK (p-ERK) and the transcription factor cAMP response element-binding protein (p-CREB) increased in the spinal cord of CIBP rats, which was attenuated by intrathecal injection of fluorocitrate or U0126.</p> <p>Conclusions</p> <p>The ERK inhibitors could have a useful role in CIBP management, because the same target is expressed in various cells at different times.</p

    Dense infraspecific sampling reveals cryptic differentiation in the enigmatic hemiparasitic love vine Cassytha filiformis (Lauraceae)

    Get PDF
    Species delimitation remains a challenge worldwide, especially in highly diverse tropical and subtropical regions. Here, we use an integrative approach that combines morphology, phylogenomics, and species distribution modeling (SDM) to clarify the cryptic differentiation within the enigmatic hemiparasitic love vine Cassytha filiformis (Lauraceae) in China and adjacent regions. We generated complete plastid genomes and nuclear ribosomal sequences for diverse samples from across the species range and compared results with previously published plastid data, recovering two well-supported monophyletic clades. Further, the analysis revealed significant differences in two morphological characters and SDM, indicating distinct environmental factors influencing their distributions. Fossil-calibrated analyses to estimate the origins and diversification patterns for the cryptic species gave divergence age estimates corresponding to the Oligo-Miocene; a period of new ecological opportunities associated with the prevailing East Asian monsoon. Multivariate analyses support the conclusion that southern China and adjacent regions have a different, previously unknown, cryptic lineage of C. filiformis. Our study highlights the importance of using multivariate approach to characterize plant species, as well as the significant role that past climatic changes have played in driving speciation in parasitic plants in tropical and subtropical zones.</p

    Mesaconine alleviates doxorubicin-triggered cardiotoxicity and heart failure by activating PINK1-dependent cardiac mitophagy

    Get PDF
    Aberrant mitophagy has been identified as a driver for energy metabolism disorder in most cardiac pathological processes. However, finding effective targeted agents and uncovering their precise modulatory mechanisms remain unconquered. Fuzi, the lateral roots of Aconitum carmichaelii, shows unique efficacy in reviving Yang for resuscitation, which has been widely used in clinics. As a main cardiotonic component of Fuzi, mesaconine has been proven effective in various cardiomyopathy models. Here, we aimed to define a previously unrevealed cardioprotective mechanism of mesaconine-mediated restoration of obstructive mitophagy. The functional implications of mesaconine were evaluated in doxorubicin (DOX)-induced heart failure models. DOX-treated mice showed characteristic cardiac dysfunction, ectopic myocardial energy disorder, and impaired mitophagy in cardiomyocytes, which could be remarkably reversed by mesaconine. The cardioprotective effect of mesaconine was primarily attributed to its ability to promote the restoration of mitophagy in cardiomyocytes, as evidenced by elevated expression of PINK1, a key mediator of mitophagy induction. Silencing PINK1 or deactivating mitophagy could completely abolish the protective effects of mesaconine. Together, our findings suggest that the cardioprotective effects of mesaconine appear to be dependent on the activation of PINK1-induced mitophagy and that mesaconine may constitute a promising therapeutic agent for the treatment of heart failure
    corecore