22 research outputs found
Ferrocene-functionalized carbon nanoparticles †
Carbon nanoparticles were synthesized from natural gas soot and functionalized with ferrocenyl moieties by using 4-ferrocenylphenyldiazonium as the reactive precursor. The incorporation of the ferrocenyl units onto the carbon nanoparticle surface was confirmed by varied spectroscopic measurements. For instance, in FTIR measurements the characteristic vibrational bands of the ferrocenyl and phenyl moieties could be clearly identified. XPS measurements showed that there were approximately 31.9 ferrocenyl units per nanoparticle. UV-vis spectroscopic measurements displayed an absorption band at ca. 465 nm which was consistent with the optical characteristics of ferrocenyl derivatives. Furthermore, with surface functionalization by the ferrocenyl moieties, the photoluminescence of the carbon nanoparticles was found to diminish in intensity and red-shift in energy with the addition of NOBF 4 . This was accounted for by the formation of varied electronaccepting moieties on the particle surface, such as positively charged ferrocenium, quinone-like derivatives, and nitrosation of the aromatic rings of the graphitic cores. Interestingly, in electrochemical studies the nanoparticle-bound ferrocenyl moieties were found to exhibit two pairs of voltammetric waves with a difference of their formal potentials at about 78 mV, suggesting nanoparticle-mediated intraparticle charge delocalization at mixed valence as a result of the strong core-ligand covalent bonds and the conductive sp 2 carbon matrix of the graphitic cores. Consistent behaviors were observed in near-infrared measurements, indicating that the particles behaved analogously to a Class I/II mixedvalence compound
Molecular catalysis of the oxygen reduction reaction by iron porphyrin catalysts tethered into Nafion layers
This study was motivated by the need for improved understanding of the kinetics and transport phenomena in a homogeneous catalyst system for the oxygen reduction reaction (ORR). Direct interaction between the sulfonic groups of Nafion and an Fe(III) meso-tetra(N-methyl-4-pyridyl) porphine chloride (Fe(III)TMPyP) compound was observed using FTIR and in situ UV–Vis spectroelectrochemical characterizations. A positive shift of the half wave potential value (E1/2) for ORR on the iron porphyrin catalyst (Fe(III)TMPyP) was observed upon addition of a specific quantity of Nafion ionomer on a glassy carbon working electrode, indicating not only a faster charge transfer rate but also the role of protonation in the oxygen reduction reaction (ORR) process. A membrane electrode assembly (MEA) was made as a sandwich of a Pt-coated anode, a Nafion® 212 membrane, and a Fe(III)TMPyP + Nafion ionomer-coated cathode. This three-dimensional catalysis system has been demonstrated to be working in a H2/O2 proton exchange membrane (PEM) fuel cell test
Butylphenyl-functionalized palladium nanoparticles as effective catalysts for the electrooxidation of formic acid
Monodisperse butylphenyl-functionalized palladium (Pd-BP, dia. 2.24 nm) nanoparticles were synthesized through co-reduction of butylphenyldiazonium and H(2)PdCl(4) by NaBH(4). Because of this unique surface functionalization and a high specific electro-chemical surface area (122 m(2) g(-1)), the Pd-BP nanoparticles exhibited a mass activity similar to 4.5 times that of commercial Pd black for HCOOH electrooxidation.National Science Foundation[CHE-0832605, CHE-1012258
Electrocatalytic Activity of Palladium Nanocatalysts Supported on Carbon Nanoparticles in Formic Acid Oxidation
采用化学还原法制备了碳纳米粒子支撑的钯纳米结构(Pd-CNP). 透射电镜表征显示在Pd-CNP纳米复合物中,金属Pd呈菜花状结构,粒径约20~30 nm。它们由许多更小的Pd纳米粒子(3~8 nm)组成. 电化学研究表明,虽然Pd-CNP的电化学活性面积比商业Pd黑低40%(可能原因是部分Pd表面被一层碳纳米粒子覆盖),但其对甲酸氧化却表现出更好的电催化活性:质量比活性和面积比活性都比Pd黑高几倍. 催化活性增强的原因可能是碳纳米粒子支撑的Pd纳米结构具有特殊的层次化结构,可以形成更多的活性位,以及表面位更利于反应进行.Palladium nanostructures were deposited onto carbon nanoparticle surface by a chemical reduction method. Transmission electron microscopic studies showed that whereas the resulting metal-carbon (Pd-CNP) nanocomposites exhibited a diameter of 20 to 30 nm, the metal components actually showed a cauliflower-like surface morphology that consisted of numerous smaller Pd nanoparticles (3 to 8 nm). Electrochemical studies showed that the effective surface area of the Pd-CNP nanoparticles was about 40% less than that of Pd black, possibly because the Pd nanoparticles were coated with a layer of carbon nanoparticles; yet, the Pd-CNP nanocomposites exhibited marked enhancement of the electrocatalytic activity in formic acid oxidation, as compared to that of Pd black. In fact, the mass- and surface-specific activities of the former were about three times higher than those of the latter. This improvement was likely a result of the enhanced accessibility of the Pd catalyst surface and the formation of abundant active sites of Pd on the carbon nanoparticle surface due to the hierarchical structure of the metal nanocatalysts.This work was supported, in part, by the National Science Foundation (CHE–1012256 and DMR–0804049) and by the ACS-Petroleum Research Fund (49137–ND10). J. H. was supported, in part, by a research fellowship from the China Scholarship Council. TEM work was performed as a User Project at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the US Department of EnergyThis work was supported, in part, by the National Science Foundation (CHE–1012256 and DMR–0804049) and by the ACS-Petroleum Research Fund (49137–ND10). J. H. was supported, in part, by a research fellowship from the China Scholarship Council. TEM work was performed as a User Project at the National Center for Electron Microscopy, Lawrence Berkeley National Laboratory, which is supported by the US Department of Energy作者联系地址:1. 加利福尼亚大学化学与生物化学系,美国 圣克鲁兹 95064; 2. 西北工业大学凝固技术国家重点实验室,陕西 西安710072Author's Address: 1. Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States; 2. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China通讯作者E-mail:[email protected]
METAL NANOPARTICLES FUNCTIONALIZED WITH METAL-LIGAND COVALENT BONDS
Metal-organic contact has been recognized to play important roles in regulation of optical and electronic properties of nanoparticles. In this thesis, significant efforts have been devoted into synthesis of ruthenium nanoparticles with various metal-ligand interfacial linkages and investigation of their electronic and optical properties. Ruthenium nanoparticles were prepared by the self-assembly of functional group onto bare Ru colloid surface. As to Ru-alkyne nanoparticles, the formation of a Ru-vinylidene (Ru=C=CH-R) interfacial bonding linkage was confirmed by the specific reactivity of the nanoparticles with imine derivatives and olefin at the metal-ligand interface, as manifested in NMR, photoluminescence, and electrochemical measurements. Interestingly, it was found the electronic coupling coefficient (&beta)for strongly depend upon such metal-ligand interfacial bonding.Next, such metal-ligand interfacial bonding was extended to ruthenium-nitrene &pi bonds on ruthenium colloids, which were investigated by XPS. The nanoparticles exhibited a 1:1 atomic ratio of nitrogen to sulfur, consistent with that of sulfonyl nitrene fragments. In addition, the nanoparticle-bound nitrene moieties behaved analogously to azo derivatives, as manifested in UV-vis and fluorescence measurements. Further testimony of the formation of Ru=N interfacial linkages was highlighted in the unique reactivity of the nanoparticles with alkenes by imido transfer.Extensive conjugation between metal-ligand interfacial bond results in remarkable intraparticle charge delocalization on Ru-alkynide nanoparticles, which was manipulated by simple chemical reduction or oxidation. Charging of extra electrons into the nanoparticle cores led to an electron-rich metal core and hence red-shift of the triple bond stretching mode, lower binding energy of sp hybridized C 1s and dimmed fluorescence of nanoparticles. Instead, chemical oxidation resulted in the opposite impacts on these properties. By taking advantage of such extensively conjugated metal-ligand bonding and effective intraparticle charge delocalization of ruthenium nanoparticles, Ru=carbene nanoparticles functionalized with multiple moieties by olefin metathesis reactions was further exploited for metal ion sensing. When the nanoparticles were co-functionalized with 1-vinylpyrene and 4-vinylbenzo-18-crown-6, upon the binding of metal ions into the crown ether cavity, the emission intensity of the nanoparticle fluorescence from the conjugation of vinylpyrene was found to diminish, with the most significant effects observed with K+ ions. In the case of ruthenium nanoparticles co-functionalized with pyrene and histidine derivative moieties through Ru=carbene &pi bonds. The selective complexation of the histidine moiety with transition metal ions led to marked diminishment of the emission intensity from conjugation of pyrene. Of all the metal ions tested, the impacts were much more drastic with Pb2+, Co2+ and Hg2+ than with Li+, K+, Rb+, Mg2+ Ca2+ and Zn2+ ions.These were ascribed to the selective binding of 18-crown-6 to potassium ions or complexation of histidine derivative to transition metal ions, where the metal ions led to polarization of the nanoparticle core electrons to the metal surface and hence impeded intraparticle charge delocalization. Functionalization of semiconductor with metal nanoparticles could be exploited to remarkably enhance their photo catalytic performance. Before this exploration, in the last chapter, the impacts of the TiO2 nanocrystalline structure on the photocatalytic activity were then examined by using the reduction of methylene blue in water. It was found that in the presence of anatase and brookite crystalline phase, TiO2 nanotube arrays exhibited the highest photo catalytic activity. This is ascribed to synergistic coupling of the anatase and brookite crystalline domains, which led to effective charge separation upon photoirradiation
Recommended from our members
Photocatalytic reduction of methylene blue by TiO2 nanotube arrays: effects of TiO2 crystalline phase
TiO2 nanotube arrays were synthesized by anodization of Ti metal sheets followed by thermal annealing at elevated temperatures from 400 to 600 °C. Scanning electron microscopic measurements showed that dense arrays of nanotubes were produced with the inner diameter about 100 nm, wall thickness 35 nm, and length about 10 μm. X-ray diffraction measurements showed that the as-prepared nanotubes were largely amorphous, whereas thermal annealing led to the formation of well-defined anatase crystalline phase. More interestingly, at 470 °C, the brookite crystalline phase also started to emerge, which became better defined at 500 °C and disappeared eventually at higher temperatures, a phenomenon that has not been observed previously in TiO2 nanotube arrays prepared by anodization. The impacts of the TiO2 nanocrystalline structure on the photocatalytic activity were then examined by using the reduction of methylene blue in water as an illustrating example. Upon exposure to UV lights, the visible absorption profiles of methylene blue exhibited apparent diminishment. Based on these spectrophotometric measurements, the corresponding pseudo-first-order rate constant was estimated, and the sample thermally annealed at 500 °C was found to exhibit the highest activity. The strong correlation between the TiO2 crystalline characteristics and photocatalytic performance suggests that the synergistic coupling of the anatase and brookite crystalline domains led to effective charge separation upon photoirradiation and hence improved photocatalytic activity, most probably as a consequence of the vectorial displacement at the nanoscale junctions between these crystalline grains that impeded the dynamics of electron–hole recombination. These results demonstrate the significance of nanoscale engineering in the manipulation of oxide photocatalytic performance
Recommended from our members
CoSe2 Nanoparticles Encapsulated by N‐Doped Carbon Framework Intertwined with Carbon Nanotubes: High‐Performance Dual‐Role Anode Materials for Both Li‐ and Na‐Ion Batteries
It is of fundamental and technological significance to develop dual-role anode materials for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) with high performance. Here, a composite material based on CoSe2 nanoparticles encapsulated in N-doped carbon framework intertwined with carbon nanotubes (CoSe2@N-CF/CNTs) is prepared successfully from cobalt-based zeolitic imidazolate framework (ZIF-67). As anode materials for LIBs, CoSe2@N-CF/CNTs composites deliver a reversible capacity of 428 mAh g-1 even after 500 cycles at a current density of 1 A g-1 with almost 100% Coulombic efficiency. The charge and discharge mechanisms of CoSe2 are characterized using ex situ X-ray diffraction and Raman analysis, from which the lithiation products of CoSe2 are found to be Li x CoSe2 and Li2Se, which are further converted to CoSe2 upon delithiation. The CoSe2@N-CF/CNTs composites also demonstrate excellent electrochemical performance as anode materials for SIBs with a carbonate-based electrolyte, with specific capacities of 606 and 501 mAh g-1 at 0.1 and 1 A g-1 in the 100th cycle. The electrochemical performance of the anode materials is further studied by pseudocapacitance and galvanostatic intermittent titration technique (GITT) measurements. This work may be exploited for the rational design and development of dual-role anode materials for both Li- and Na-ion batteries
Chemical analysis of surface oxygenated moieties of fluorescent carbon nanoparticles
Water-soluble carbon nanoparticles were prepared by refluxing natural gas soot in concentrated nitric acid. The surface of the resulting nanoparticles was found to be decorated with a variety of oxygenated species, as suggested by spectroscopic measurements. Back potentiometric titration of the nanoparticles was employed to quantify the coverage of carboxylic, lactonic, and phenolic moieties on the particle surface by taking advantage of their vast difference of acidity (pK a ). The results were largely consistent with those reported in previous studies with other carbonaceous (nano)materials. Additionally, the presence of ortho-and para-quinone moieties on the nanoparticle surface was confirmed by selective labelling with o-phenylenediamine, as manifested in X-ray photoelectron spectroscopy, photoluminescence, and electrochemical measurements. The results further supported the arguments that the surface functional moieties that were analogous to 9,10-phenanthrenequinone were responsible for the unique photoluminescence of the nanoparticles and the emission might be regulated by surface charge state, as facilitated by the conjugated graphitic core matrix