69 research outputs found
Electrical transport and magnetic properties of nanostructured La0.67Ca0.33MnO3
Nanostructured La0.67Ca0.33MnO3 (NS-LCMO) was formed by pulsed-laser
deposition on the surface of porous Al2O3. The resistance peak temperature (Tp)
of the NS-LCMO increases with increasing average thickness of the films, while
their Curie temperatures (Tc) remain unchanged. The coercive field of the
samples increases with decreasing film thickness and its temperature dependence
can be well described by Hc(T) = Hc(0)[1-(T/TB)1/2]. A large magnetoresistance
and strong memory effect were observed for the NS-LCMO. The results are
discussed in terms of the size effect, Coulomb blockade and magnetic tunneling
effect. This work also demonstrates a new way to get nanostructured manganites
Spin fluctuation induced Weyl semimetal state in the paramagnetic phase of EuCd2As2
Weyl fermions as emergent quasiparticles can arise in Weyl semimetals (WSMs) in which the energy bands are nondegenerate, resulting from inversion or time-reversal symmetry breaking. Nevertheless, experimental evidence for magnetically induced WSMs is scarce. Here, using photoemission spectroscopy, we observe that the degeneracy of Bloch bands is already lifted in the paramagnetic phase of EuCd2As2. We attribute this effect to the itinerant electrons experiencing quasi-static and quasi\u2013long-range ferromagnetic fluctuations. Moreover, the spin-nondegenerate band structure harbors a pair of ideal Weyl nodes near the Fermi level. Hence, we show that long-range magnetic order and the spontaneous breaking of time-reversal symmetry are not essential requirements for WSM states in centrosymmetric systems and that WSM states can emerge in a wider range of condensed matter systems than previously thought
Spin fluctuation induced Weyl semimetal state in the paramagnetic phase of EuCd2As2
Weyl fermions as emergent quasiparticles can arise in Weyl semimetals (WSMs) in which the energy bands are nondegenerate, resulting from inversion or time-reversal symmetry breaking. Nevertheless, experimental evidence for magnetically induced WSMs is scarce. Here, using photoemission spectroscopy, we observe that the degeneracy of Bloch bands is already lifted in the paramagnetic phase of EuCd2As2. We attribute this effect to the itinerant electrons experiencing quasi-static and quasi-long-range ferromagnetic fluctuations. Moreover, the spin-nondegenerate band structure harbors a pair of ideal Weyl nodes near the Fermi level. Hence, we show that long-range magnetic order and the spontaneous breaking of time-reversal symmetry are not essential requirements for WSM states in centrosymmetric systems and that WSM states can emerge in a wider range of condensed matter systems than previously thought
- …