513 research outputs found

    Internal flow of twin-fluid atomizer and breakup behavior of liquid jet injected into crossflow

    Get PDF
    内容の要約広島大学(Hiroshima University)博士(工学)Doctor of Philosophy in Engineeringdoctora

    Minocycline inhibits nerve cell apoptosis caused by intracerebral hemorrhage in young mice via TRAIL signaling pathway

    Get PDF
    Purpose: To investigate the influence of minocycline on nerve cell apoptosis caused by intracerebral hemorrhage (ICH) in young mouse model, and the mechanism of action involved. Methods:C57BL/6 mice were divided into control group, ICH group and minocycline treatment group (MC group, 25 mg/kg). Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was conducted to determine nerve cell apoptosis in the brain tissues. The expression levels of genes and proteins related to apoptosis and TRAIL signaling pathway were measured by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting.Results: The levels of Glu, Cr, Na+, IL-6, IL-1β and TNF-β were significantly increased in ICH group, and the content of K+ was significantly raised in MC group (p < 0.05). TUNEL staining showed that there were more apoptotic cells, dominated by glial cells in ICH group, and fewer apoptotic cells in MC group. Gene assay results indicate that ICH group exhibited markedly raised mRNA levels of caspase-3, TNF-β and TRAIL1, as well as lowered levels of B-cell lymphoma-2 (Bcl-2) (p < 0.05). The results of protein assay showed that the protein levels of caspase-3 and TRAIL1 rose while that of Bcl-2 declined significantly in ICH group. However, the expression trends of the genes and proteins in MC group were the opposite of those in the ICH group.Conclusion: Minocycline inhibits nerve cell apoptosis caused by ICH in the young mouse model by repressing the expression of the TRAIL signaling pathway. The findings may provide new insight intothe treatment of ICH

    Application of Artificial Intelligence (AI) methods for designing and analysis of Reconfigurable Cellular Manufacturing System (RCMS)

    Get PDF
    This work focuses on the design and control of a novel hybrId manufacturing system: Reconfigurable Cellular Manufacturing System (RCMS) by using Artificial Intelligence (AI) approach. It is hybrid as it combines the advantages of Cellular Manufacturing System (CMS) and Reconfigurable Manufacturing System (RMS). In addition to inheriting desirable properties from CMS and RMS, RCMS provides additional benefits including flexibility and the ability to respond to changing products, product mix and market conditions during its useful life, avoiding premature obsolescence of the manufacturing system. The emphasis of this research is the formation of Reconfigurable Manufacturing Cell (RMC) which is the dynamic and logical clustering of some manufacturing resources, driven by specific customer orders, aiming at optimally fulfilling customers' orders along with other RMCs in the RCMS

    Timely Fusion of Surround Radar/Lidar for Object Detection in Autonomous Driving Systems

    Full text link
    Fusing Radar and Lidar sensor data can fully utilize their complementary advantages and provide more accurate reconstruction of the surrounding for autonomous driving systems. Surround Radar/Lidar can provide 360-degree view sampling with the minimal cost, which are promising sensing hardware solutions for autonomous driving systems. However, due to the intrinsic physical constraints, the rotating speed of surround Radar, and thus the frequency to generate Radar data frames, is much lower than surround Lidar. Existing Radar/Lidar fusion methods have to work at the low frequency of surround Radar, which cannot meet the high responsiveness requirement of autonomous driving systems.This paper develops techniques to fuse surround Radar/Lidar with working frequency only limited by the faster surround Lidar instead of the slower surround Radar, based on the state-of-the-art object detection model MVDNet. The basic idea of our approach is simple: we let MVDNet work with temporally unaligned data from Radar/Lidar, so that fusion can take place at any time when a new Lidar data frame arrives, instead of waiting for the slow Radar data frame. However, directly applying MVDNet to temporally unaligned Radar/Lidar data greatly degrades its object detection accuracy. The key information revealed in this paper is that we can achieve high output frequency with little accuracy loss by enhancing the training procedure to explore the temporal redundancy in MVDNet so that it can tolerate the temporal unalignment of input data. We explore several different ways of training enhancement and compare them quantitatively with experiments.Comment: Accepted at DATE 202

    Quantum-Inspired Distributed Memetic Algorithm

    Get PDF
    This paper proposed a novel distributed memetic evolutionary model, where four modules distributed exploration, intensified exploitation, knowledge transfer, and evolutionary restart are coevolved to maximize their strengths and achieve superior global optimality. Distributed exploration evolves three independent populations by heterogenous operators. Intensified exploitation evolves an external elite archive in parallel with exploration to balance global and local searches. Knowledge transfer is based on a point-ring communication topology to share successful experiences among distinct search agents. Evolutionary restart adopts an adaptive perturbation strategy to control search diversity reasonably. Quantum computation is a newly emerging technique, which has powerful computing power and parallelized ability. Therefore, this paper further fuses quantum mechanisms into the proposed evolutionary model to build a new evolutionary algorithm, referred to as quantum-inspired distributed memetic algorithm (QDMA). In QDMA, individuals are represented by the quantum characteristics and evolved by the quantum-inspired evolutionary optimizers in the quantum hyperspace. The QDMA integrates the superiorities of distributed, memetic, and quantum evolution. Computational experiments are carried out to evaluate the superior performance of QDMA. The results demonstrate the effectiveness of special designs and show that QDMA has greater superiority compared to the compared state-of-the-art algorithms based on Wilcoxon’s rank-sum test. The superiority is attributed not only to good cooperative coevolution of distributed memetic evolutionary model, but also to superior designs of each special component

    3,4-Bis[4-(4-meth­oxy­phen­oxy)phen­yl]-2,5-dihydro­furan-2,5-dione

    Get PDF
    In the crystal structure of the title compound, C30H22O7, neighbouring benzene rings are twisted out of the plane of the five-membered ring by 27.30 (3) and 45.47 (3)°

    HSP60, a protein downregulated by IGFBP7 in colorectal carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In our previous study, it was well defined that <it>IGFBP7 </it>was an important tumor suppressor gene in colorectal cancer (CRC). We aimed to uncover the downstream molecules responsible for <it>IGFBP7</it>'s behaviour in this study.</p> <p>Methods</p> <p>Differentially expressed protein profiles between PcDNA3.1(<it>IGFBP7</it>)-transfected RKO cells and the empty vector transfected controls were generated by two-dimensional gel electrophoresis (2-DE) and mass spectrometry (MS) identification. The selected differentially expressed protein induced by IGFBP7 was confirmed by western blot and ELISA. The biological behaviour of the protein was explored by cell growth assay and colony formation assay.</p> <p>Results</p> <p>Six unique proteins were found differentially expressed in PcDNA3.1(<it>IGFBP7</it>)-transfected RKO cells, including albumin (ALB), 60 kDa heat shock protein(HSP60), Actin cytoplasmic 1 or 2, pyruvate kinase muscle 2(PKM2), beta subunit of phenylalanyl-tRNA synthetase(FARSB) and hypothetical protein. The downregulation of HSP60 by IGFBP7 was confirmed by western blot and ELISA. Recombinant human HSP60 protein could increase the proliferation rate and the colony formation ability of PcDNA3.1(<it>IGFBP7</it>)-RKO cells.</p> <p>Conclusion</p> <p>HSP60 was an important downstream molecule of IGFBP7. The downregulation of HSP60 induced by IGFBP7 may be, at least in part, responsible for IGFBP7's tumor suppressive biological behaviour in CRC.</p

    GFI1 downregulation promotes inflammation-linked metastasis of colorectal cancer.

    Get PDF
    Inflammation is frequently associated with initiation, progression, and metastasis of colorectal cancer (CRC). Here, we unveil a CRC-specific metastatic programme that is triggered via the transcriptional repressor, GFI1. Using data from a large cohort of clinical samples including inflammatory bowel disease and CRC, and a cellular model of CRC progression mediated by cross-talk between the cancer cell and the inflammatory microenvironment, we identified GFI1 as a gating regulator responsible for a constitutively activated signalling circuit that renders CRC cells competent for metastatic spread. Further analysis of mouse models with metastatic CRC and human clinical specimens reinforced the influence of GFI1 downregulation in promoting CRC metastatic spread. The novel role of GFI1 is uncovered for the first time in a human solid tumour such as CRC. Our results imply that GFI1 is a potential therapeutic target for interfering with inflammation-induced CRC progression and spread

    Iron-Modified Biochar Strengthens Simazine Adsorption and Decreases Simazine Decomposition in the Soil

    Get PDF
    Currently, modified biochar has been successfully used in the remediation of soil polluted with heavy metals. However, the effects of the modified biochar on pesticides (such as simazine) are still unclear. Herein, the environmental fate of simazine, such as decomposition, leaching, and adsorption in unamended soil, in the soil amended with unmodified and modified biochar (biochar + FeCl(3), biochar + FeOS, biochar + Fe) were evaluated. In addition, an incubation experiment was also performed to observe the influence of modified biochar on the microbial community and diversity in the soil. The results showed that modified biochar significantly decreased the decomposition of simazine in the soil compared to its counterpart. Modified biochar also reduced the concentration of simazine in the leachate. Compared with the control, soil microbial biomass in the soil amended with unmodified biochar, biochar + FeCl(3), biochar + Fe, and biochar + FeOS was decreased by 5.3%, 18.8%, 8.7%, and 18.1%, respectively. Furthermore, modified biochar changed the structure of the microbial community. This shows that modified biochar could increase the soil adsorption capacity for simazine and change the amount and microbial community that regulates the fate of simazine in the soil. This study concludes that iron-modified biochar has positive and negative effects on the soil. Therefore, its advantages and side effects should be considered before applying it to the soil
    corecore