3,492 research outputs found

    Elastic heterogeneity of soft random solids

    Full text link
    Spatial heterogeneity in the elastic properties of soft random solids is investigated via a two-pronged approach. First, a nonlocal phenomenological model for the elastic free energy is examined. This features a quenched random kernel, which induces randomness in the residual stress and Lame coefficients. Second, a semi-microscopic model network is explored using replica statistical mechanics. The Goldstone fluctuations of the semi-microscopic model are shown to reproduce the phenomenological model, and via this correspondence the statistical properties of the residual stress and Lame coefficients are inferred. Correlations involving the residual stress are found to be long-ranged and governed by a universal parameter that also gives the mean shear modulus.Comment: 5 page

    Statistical physics of isotropic-genesis nematic elastomers: I. Structure and correlations at high temperatures

    Full text link
    Isotropic-genesis nematic elastomers (IGNEs) are liquid crystalline polymers (LCPs) that have been randomly, permanently cross-linked in the high-temperature state so as to form an equilibrium random solid. Thus, instead of being free to diffuse throughout the entire volume, as they would be in the liquid state, the constituent LCPs in an IGNE are mobile only over a finite length-scale controlled by the density of cross-links. We address the effects that such network-induced localization have on the liquid-crystalline characteristics of an IGNE, as probed via measurements made at high temperatures. In contrast with the case of uncross-linked LCPs, for IGNEs these characteristics are determined not only by thermal fluctuations but also by the quenched disorder associated with the cross-link constraints. To study IGNEs, we consider a microscopic model of dimer nematogens in which the dimers interact via orientation-dependent excluded volume forces. The dimers are, furthermore, randomly, permanently cross-linked via short Hookean springs, the statistics of which we model by means of a Deam-Edwards type of distribution. We show that at length-scales larger than the size of the nematogens this approach leads to a recently proposed phenomenological Landau theory of IGNEs [Lu et al., Phys. Rev. Lett. 108, 257803 (2012)], and hence predicts a regime of short-ranged oscillatory spatial correlations in the nematic alignment, of both thermal and glassy types. In addition, we consider two alternative microscopic models of IGNEs: (i) a wormlike chain model of IGNEs that are formed via the cross-linking of side-chain LCPs; and (ii) a jointed chain model of IGNEs that are formed via the cross-linking of main-chain LCPs. At large length-scales, both of these models give rise to liquid-crystalline characteristics that are qualitatively in line with those predicted by the dimer-and-springs model.Comment: 33 pages, 6 figures, 6 appendice

    ArrayBridge: Interweaving declarative array processing with high-performance computing

    Full text link
    Scientists are increasingly turning to datacenter-scale computers to produce and analyze massive arrays. Despite decades of database research that extols the virtues of declarative query processing, scientists still write, debug and parallelize imperative HPC kernels even for the most mundane queries. This impedance mismatch has been partly attributed to the cumbersome data loading process; in response, the database community has proposed in situ mechanisms to access data in scientific file formats. Scientists, however, desire more than a passive access method that reads arrays from files. This paper describes ArrayBridge, a bi-directional array view mechanism for scientific file formats, that aims to make declarative array manipulations interoperable with imperative file-centric analyses. Our prototype implementation of ArrayBridge uses HDF5 as the underlying array storage library and seamlessly integrates into the SciDB open-source array database system. In addition to fast querying over external array objects, ArrayBridge produces arrays in the HDF5 file format just as easily as it can read from it. ArrayBridge also supports time travel queries from imperative kernels through the unmodified HDF5 API, and automatically deduplicates between array versions for space efficiency. Our extensive performance evaluation in NERSC, a large-scale scientific computing facility, shows that ArrayBridge exhibits statistically indistinguishable performance and I/O scalability to the native SciDB storage engine.Comment: 12 pages, 13 figure

    Asteroid (3200) Phaethon: colors, phase curve, limits on cometary activity and fragmentation

    Get PDF
    We report on a multi-observatory campaign to examine asteroid 3200 Phaethon during its December 2017 close approach to Earth, in order to improve our measurements of its fundamental parameters, and to search for surface variations, cometary activity and fragmentation. The mean colors of Phaethon are B-V = 0.702 +/- 0.004, V-R = 0.309 +/- 0.003, R-I = 0.266 +/- 0.004, neutral to slightly blue, consistent with previous classifications of Phaethon as a F-type or B-type asteroid. Variations in Phaethon's B-V colors (but not V-R or R-I) with observer sub-latitude are seen and may be associated with craters observed by the Arecibo radar. High cadence photometry over phases from 20 to 100 degrees allows a fit to the values of the HG photometric parameters; H = 14.57 +/- 0.02, 13.63 +/- 0.02, 13.28 +/- 0.02, 13.07 +/- 0.02; G = 0.00 +/- 0.01, -0.09 +/- 0.01, -0.10 +/- 0.01, -0.08 +/- 0.01 in the BVRI filters respectively; the negative G values are consistent with other observations of F type asteroids. Light curve variations were seen that are also consistent with concavities reported by Arecibo, indicative of large craters on Phaethon's surface whose ejecta may be the source of the Geminid meteoroid stream. A search for gas/dust production set an upper limit of 0.06 +/- 0.02 kg/s when Phaethon was 1.449 AU from the Sun, and 0.2 +/- 0.1 kg/s at 1.067 AU. A search for meter-class fragments accompanying Phaethon did not find any whose on-sky motion was not also consistent with background main belt asteroids.Comment: Accepted by the Astronomical Journal, 15 pages, 8 figures, 1 animated figur

    Effects of annealing on microstructure and microstrength of metallurgical coke

    Get PDF
    Two metallurgical cokes were heat treated at 1673 K to 2273 K (1400 degrees celsius to 2000 degrees celsius) in a nitrogen atmosphere. The effect of heat treatment on the microstructure and microstrength of metallurgical cokes was characterized using X-ray diffraction, Raman spectroscopy, and ultramicroindentation. In the process of heat treatment, the microstructure of the metallurgical cokes transformed toward the graphite structure. Raman spectroscopy of reactive maceral-derived component (RMDC) and inert maceral-derived component (IMDC) indicated that the graphitisation degree of the RMDC was slightly lower than that of the IMDC in the original cokes; however graphitisation of the RMDC progressed faster than that of the IMDC during annealing, and became significantly higher after annealing at 2273 K (2000 degrees celsius). The microstrength of cokes was significantly degraded in the process of heat treatment. The microstrength of the RMDC was lower, and of its deterioration caused by heat treatment was more severe than IMDC. The degradation of the microstrength of cokes was attributed to their increased graphitisation degree during the heat treatment
    corecore