651 research outputs found

    Superoxide dismutase 2 as a marker to differentiate tuberculous pleural effusions from malignant pleural effusions

    Get PDF
    OBJECTIVES: Our previous study demonstrated that superoxide dismutase levels were higher in tuberculous pleural effusions than in malignant pleural effusions, but that this difference could not be used to discriminate between the two. The objective of the present study was to investigate the levels of superoxide dismutase 2 in pleural effusions and to evaluate the diagnostic significance of pleural effusion superoxide dismutase 2. METHODS: Superoxide dismutase 2 concentrations were determined in pleural effusions from 54 patients with tuberculous pleural effusion and 33 with malignant pleural effusion using an enzyme-linked immunosorbent assay (ELISA) kit. Pleural effusion interferon gamma and tumor necrosis factor alpha levels were also analyzed by ELISA. The Mann-Whitney U test was used to evaluate the significance of differences. Associations between superoxide dismutase 2 concentrations and sex, age and smoking habits were assessed using Spearman's or Pearson's correlation coefficient analysis. Receiver operator characteristic analysis was performed to evaluate the value of superoxide dismutase 2 levels in the discrimination of tuberculous pleural effusion from malignant pleural effusion. RESULTS: Superoxide dismutase 2 levels were significantly higher in patients with tuberculous pleural effusion compared with those with malignant pleural effusion (

    Pleural effusion adenosine deaminase: a candidate biomarker to discriminate between Gram-negative and Gram-positive bacterial infections of the pleural space

    Get PDF
    OBJECTIVES: Delay in the treatment of pleural infection may contribute to its high mortality. In this retrospective study, we aimed to evaluate the diagnostic accuracy of pleural adenosine deaminase in discrimination between Gram-negative and Gram-positive bacterial infections of the pleural space prior to selecting antibiotics. METHODS: A total of 76 patients were enrolled and grouped into subgroups according to Gram staining: 1) patients with Gram-negative bacterial infections, aged 53.2±18.6 years old, of whom 44.7% had empyemas and 2) patients with Gram-positive bacterial infections, aged 53.5±21.5 years old, of whom 63.1% had empyemas. The pleural effusion was sampled by thoracocentesis and then sent for adenosine deaminase testing, biochemical testing and microbiological culture. The Mann-Whitney U test was used to examine the differences in adenosine deaminase levels between the groups. Correlations between adenosine deaminase and specified variables were also quantified using Spearman’s correlation coefficient. Moreover, receiver operator characteristic analysis was performed to evaluate the diagnostic accuracy of pleural effusion adenosine deaminase. RESULTS: Mean pleural adenosine deaminase levels differed significantly between Gram-negative and Gram-positive bacterial infections of the pleural space (191.8±32.1 U/L vs 81.0±16.9 U/L,

    Vegetation dynamics and their response to freshwater inflow and climate variables in the Yellow River Delta, China

    Get PDF
    Based on SPOT Vegetation NDVI data, streamflow data and meteorological data, the variation of vegetation cover, measured by the Normalized Difference Vegetation Index (NDVI), and its response to freshwater inflow, precipitation and temperature in the Yellow River Delta and its buffer zones have been investigated for the period 1998-2009. The results show that NDVI has a remarkable regional and seasonal difference. The farther from the Yellow River Channel and the nearer to the Bohai Sea Coastline, the smaller the NDVI value, as influenced by the interaction between freshwater and saltwater on vegetation. Seasonally, high NDVI values appear in summer (August) and low in spring (April). From 1998 to 2009, growing season NDVI significantly increases in the Yellow River Delta. Summer and autumn NDVI have a similar trend pattern to growing season NDVI, while spring NDVI significantly decreases. NDVI shows different strengths of correlation with freshwater inflow, precipitation and temperature respectively and these correlations vary in different seasons and months. Freshwater inflow is a key factor for vegetation dynamics and NDVI variation. Climate features play a dominant role in seasonal variation in vegetation cover. However, the impacts of freshwater inflow and climate variables on vegetation have been greatly modified by a range of human activities such as land use pattern and land use change as well as water diversion from the Yellow River. Overall, the results of this study can be helpful for decision-making of regional ecological protection and economic development. (C) 2012 Elsevier Ltd and INQUA. All rights reserved.Based on SPOT Vegetation NDVI data, streamflow data and meteorological data, the variation of vegetation cover, measured by the Normalized Difference Vegetation Index (NDVI), and its response to freshwater inflow, precipitation and temperature in the Yellow River Delta and its buffer zones have been investigated for the period 1998-2009. The results show that NDVI has a remarkable regional and seasonal difference. The farther from the Yellow River Channel and the nearer to the Bohai Sea Coastline, the smaller the NDVI value, as influenced by the interaction between freshwater and saltwater on vegetation. Seasonally, high NDVI values appear in summer (August) and low in spring (April). From 1998 to 2009, growing season NDVI significantly increases in the Yellow River Delta. Summer and autumn NDVI have a similar trend pattern to growing season NDVI, while spring NDVI significantly decreases. NDVI shows different strengths of correlation with freshwater inflow, precipitation and temperature respectively and these correlations vary in different seasons and months. Freshwater inflow is a key factor for vegetation dynamics and NDVI variation. Climate features play a dominant role in seasonal variation in vegetation cover. However, the impacts of freshwater inflow and climate variables on vegetation have been greatly modified by a range of human activities such as land use pattern and land use change as well as water diversion from the Yellow River. Overall, the results of this study can be helpful for decision-making of regional ecological protection and economic development. (C) 2012 Elsevier Ltd and INQUA. All rights reserved

    Effects of Supervisors\u27 Technology-Mediated Interruption Behavior on Their Work-Life Balance

    Get PDF
    Although technology-mediated interruption has received substantial research attention over the past several years, most of the existing research investigates the effects of interruptions only from the perspective of the interrupted person. In this paper, we aim to answer the recent calls for research from the interrupters’ perspective and develop a research model based upon Conservation of Resources (COR) theory and Action Regulation Theory (ART) to explore the effects of supervisors’ technology-mediated interruption behavior. In this model, we propose that supervisors’ technology-mediated interruption behavior leads to information overload and sense of control, which impact work/non-work exhaustion and work/non-work performance, and eventually affect the supervisors’ perception of work-life balance. We also propose that personal characteristics including supervisors’ sense of power and computer experience will moderate the relationships between supervisors’ technology-mediated interruption behavior and information overload/sense of control. We plan to test the proposed research model using experience sampling methodology (ESM)

    Game Analysis on the Evolution of Decision-Making of Vaccine Manufacturing Enterprises under the Government Regulation Model

    Get PDF
    open access articleThe harm caused by defective vaccines to human health and social stability is immeasurable. Aiming at the government’s supervision of the vaccine market, an evolutionary game model is constructed to analyze the quality of supervision and the key factors in the dynamic interaction between government departments and vaccine manufacturers under different supervision modes in the vaccine manufacturing process. The results show that: (1) Severe punishment by government regulatory authorities, and increased costs of rectification after investigation and handling of involuntary behaviors of vaccine enterprises can effectively prevent involuntary behaviors of vaccine enterprises. (2) In the early stage of the game, the success rate of the government’s efficient supervision will make the vaccine enterprises continuously self-disciplined; when the vaccine market is relatively stable, the government’s supervision departments tend to be more conducive to passive supervision. (3) The success rate of government regulatory departments and the probability of a third-party reporting to play a great role in promoting the self-discipline of enterprises. (4) The power of government and regulation are conducive to promoting the active supervision of the government regulatory authorities but corruption of government and awareness of people are different. Once the phenomenon of vaccine enterprises’ non-discipline increases, the government regulation must change from passive regulation to active regulation. Therefore, the government should implement different measures according to the characteristics of each period in the manufacturing process to effectively prevent problematic vaccines. The conclusions and policy recommendations are significant for addressing the issue of insufficient self-discipline of vaccine manufacturers

    FPSA: A Full System Stack Solution for Reconfigurable ReRAM-based NN Accelerator Architecture

    Full text link
    Neural Network (NN) accelerators with emerging ReRAM (resistive random access memory) technologies have been investigated as one of the promising solutions to address the \textit{memory wall} challenge, due to the unique capability of \textit{processing-in-memory} within ReRAM-crossbar-based processing elements (PEs). However, the high efficiency and high density advantages of ReRAM have not been fully utilized due to the huge communication demands among PEs and the overhead of peripheral circuits. In this paper, we propose a full system stack solution, composed of a reconfigurable architecture design, Field Programmable Synapse Array (FPSA) and its software system including neural synthesizer, temporal-to-spatial mapper, and placement & routing. We highly leverage the software system to make the hardware design compact and efficient. To satisfy the high-performance communication demand, we optimize it with a reconfigurable routing architecture and the placement & routing tool. To improve the computational density, we greatly simplify the PE circuit with the spiking schema and then adopt neural synthesizer to enable the high density computation-resources to support different kinds of NN operations. In addition, we provide spiking memory blocks (SMBs) and configurable logic blocks (CLBs) in hardware and leverage the temporal-to-spatial mapper to utilize them to balance the storage and computation requirements of NN. Owing to the end-to-end software system, we can efficiently deploy existing deep neural networks to FPSA. Evaluations show that, compared to one of state-of-the-art ReRAM-based NN accelerators, PRIME, the computational density of FPSA improves by 31x; for representative NNs, its inference performance can achieve up to 1000x speedup.Comment: Accepted by ASPLOS 201
    • …
    corecore