41,348 research outputs found

    Broad-line and Multi-wave Band Emission from Blazars

    Full text link
    We study the correlations of the flux of the broad-line emission (FBLRF_{BLR}) with the X-ray emission flux, optical emission flux at 5500 \AA and radio emission flux at 5 GHz, respectively, for a large sample of 50 Blazars (39 flat-spectrum radio quasars (FSRQs) and 11 BL Lac objects). Our main results are as follows. There are very strong correlations between FBLRF_{BLR} and FXF_{X} and between LBLRL_{BLR} and LXL_{X} in both states for 39 FSRQs and the slopes of the linear regression equations are almost equal to 1. There are weak correlations between FBLRF_{BLR} and FXF_{X} and between LBLRL_{BLR} and LXL_{X} for 11 BL Lac objects in both states, and the slopes of the linear regression equations are close to 1. There are significant correlations between FBLRF_{BLR} and FXF_{X} and between LBLRL_{BLR} and LXL_{X} for 50 blazars in both states, the slopes of both the linear regression equations are also close to 1. These results support a close link between relativistic jets and accretion on to the central Kerr black hole. On the other hand, we find that BL Lac objects have low accretion efficiency η\eta, whereas FSRQs have high accretion efficiency η\eta. The unified model of FSRQs and BL Lac objects is also discussed.Comment: 15 pages, 8 figure

    Optimization of sensor locations for measurement of flue gas flow in industrial ducts and stacks using neural networks

    Get PDF
    This paper presents a novel application of neural network modeling in the optimization of sensor locations for the measurement of flue gas flow in industrial ducts and stacks. The proposed neural network model has been validated with an experiment based upon a case-study power plant. The results have shown that the optimized sensor location can be easily determined with this model. The industry can directly benefit from the improvement of measurement accuracy of the flue gas flow in the optimized sensor location and the reduction of manual measurement operation with Pitot tube

    Microbubble Cavitation Imaging

    Get PDF
    Ultrasound cavitation of microbubble contrast agents has a potential for therapeutic applications such as sonothrombolysis (STL) in acute ischemic stroke. For safety, efficacy, and reproducibility of treatment, it is critical to evaluate the cavitation state (moderate oscillations, stable cavitation, and inertial cavitation) and activity level in and around a treatment area. Acoustic passive cavitation detectors (PCDs) have been used to this end but do not provide spatial information. This paper presents a prototype of a 2-D cavitation imager capable of producing images of the dominant cavitation state and activity level in a region of interest. Similar to PCDs, the cavitation imaging described here is based on the spectral analysis of the acoustic signal radiated by the cavitating microbubbles: ultraharmonics of the excitation frequency indicate stable cavitation, whereas elevated noise bands indicate inertial cavitation; the absence of both indicates moderate oscillations. The prototype system is a modified commercially available ultrasound scanner with a sector imaging probe. The lateral resolution of the system is 1.5 mm at a focal depth of 3 cm, and the axial resolution is 3 cm for a therapy pulse length of 20 mu s. The maximum frame rate of the prototype is 2 Hz. The system has been used for assessing and mapping the relative importance of the different cavitation states of a microbubble contrast agent. In vitro (tissue-mimicking flow phantom) and in vivo (heart, liver, and brain of two swine) results for cavitation states and their changes as a function of acoustic amplitude are presented

    Effects Of Attenuation And Thrombus Age On The Success Of Ultrasound And Microbubble-Mediated Thrombus Dissolution

    Get PDF
    The purpose of this study was to examine the effects of applied mechanical index, incident angle, attenuation and thrombus age on the ability of 2-D vs. 3-D diagnostic ultrasound and microbubbles to dissolve thrombi. A total of 180 occlusive porcine arterial thrombi of varying age (3 or 6 h) were examined in a flow system. A tissue-mimicking phantom of varying thickness (5 to 10 cm) was placed over the thrombosed vessel and the 2-D or 3-D diagnostic transducer aligned with the thrombosed vessel using a positioning system. Diluted lipid-encapsulated microbubbles were infused during ultrasound application. Percent thrombus dissolution (%TD) was calculated by comparison of clot mass before and after treatment. Both 2-D and 3-D-guided ultrasound increased %TD compared with microbubbles alone, but %TD achieved with 6-h-old thrombi was significantly less than 3-h-old thrombi. Thrombus dissolution was achieved at 10 cm tissue-mimicking depths, even without inertial cavitation. In conclusion, diagnostic 2-D or 3-D ultrasound can dissolve thrombi with intravenous nontargeted microbubbles, even at tissue attenuation distances of up to 10 cm. This treatment modality is less effective, however, for older aged thrombi. (E-mail: [email protected]) (C) 2011 World Federation for Ultrasound in Medicine & Biology

    Mechanically-Induced Transport Switching Effect in Graphene-based Nanojunctions

    Get PDF
    We report a theoretical study suggesting a novel type of electronic switching effect, driven by the geometrical reconstruction of nanoscale graphene-based junctions. We considered junction struc- tures which have alternative metastable configurations transformed by rotations of local carbon dimers. The use of external mechanical strain allows a control of the energy barrier heights of the potential profiles and also changes the reaction character from endothermic to exothermic or vice-versa. The reshaping of the atomic details of the junction encode binary electronic ON or OFF states, with ON/OFF transmission ratio that can reach up to 10^4-10^5. Our results suggest the possibility to design modern logical switching devices or mechanophore sensors, monitored by mechanical strain and structural rearrangements.Comment: 10 pages, 4 figure

    Scalable Parallel Numerical CSP Solver

    Full text link
    We present a parallel solver for numerical constraint satisfaction problems (NCSPs) that can scale on a number of cores. Our proposed method runs worker solvers on the available cores and simultaneously the workers cooperate for the search space distribution and balancing. In the experiments, we attained up to 119-fold speedup using 256 cores of a parallel computer.Comment: The final publication is available at Springe
    • …
    corecore