50 research outputs found

    bpftime: userspace eBPF Runtime for Uprobe, Syscall and Kernel-User Interactions

    Full text link
    In kernel-centric operations, the uprobe component of eBPF frequently encounters performance bottlenecks, largely attributed to the overheads borne by context switches. Transitioning eBPF operations to user space bypasses these hindrances, thereby optimizing performance. This also enhances configurability and obviates the necessity for root access or privileges for kernel eBPF, subsequently minimizing the kernel attack surface. This paper introduces bpftime, a novel user-space eBPF runtime, which leverages binary rewriting to implement uprobe and syscall hook capabilities. Through bpftime, userspace uprobes achieve a 10x speed enhancement compared to their kernel counterparts without requiring dual context switches. Additionally, this runtime facilitates the programmatic hooking of syscalls within a process, both safely and efficiently. Bpftime can be seamlessly attached to any running process, limiting the need for either a restart or manual recompilation. Our implementation also extends to interprocess eBPF Maps within shared memory, catering to summary aggregation or control plane communication requirements. Compatibility with existing eBPF toolchains such as clang and libbpf is maintained, not only simplifying the development of user-space eBPF without necessitating any modifications but also supporting CO-RE through BTF. Through bpftime, we not only enhance uprobe performance but also extend the versatility and user-friendliness of eBPF runtime in user space, paving the way for more efficient and secure kernel operations

    Evaluation of six satellite-based terrestrial latent heat flux products in the vegetation dominated Haihe river basin of north China

    Get PDF
    In this study, six satellite-based terrestrial latent heat flux (LE) products were evaluated in the vegetation dominated Haihe River basin of North China. These LE products include Global Land Surface Satellite (GLASS) LE product, FLUXCOM LE product, Penman-Monteith-Leuning V2 (PML_V2) LE product, Global Land Evaporation Amsterdam Model datasets (GLEAM) LE product, Breathing Earth System Simulator (BESS) LE product, and Moderate Resolution Imaging Spectroradiometer (MODIS) (MOD16) LE product. Eddy covariance (EC) data collected from six flux tower sites and water balance method derived evapotranspiration (WBET) were used to evaluate these LE products at site and basin scales. The results indicated that all six LE products were able to capture the seasonal cycle of LE in comparison to EC observations. At site scale, GLASS LE product showed the highest coefficients of determination (R2) (0.58, p 2), followed by FLUXCOM and PML products. At basin scale, the LE estimates from GLASS product provided comparable performance (R2 = 0.79, RMSE = 18.8 mm) against WBET, compared with other LE products. Additionally, there was similar spatiotemporal variability of estimated LE from the six LE products. This study provides a vital basis for choosing LE datasets to assess regional water budget

    Alterations in Spontaneous Neuronal Activity and Microvascular Density of the Optic Nerve Head in Active Thyroid-Associated Ophthalmopathy

    Get PDF
    PurposeTo investigate changes in local spontaneous brain activity in patients with active thyroid-associated ophthalmopathy (TAO) and explore the relationship between such alterations and microvascular indices.MethodsThirty-six active TAO patients with active phase and 39 healthy controls (HCs) were enrolled in this study. All participants underwent resting-state functional magnetic resonance imaging (rs-fMRI), neuropsychological tests, and ophthalmological examinations. The rs-fMRI-based fractional low-frequency fluctuation amplitude (fALFF) analysis methods were used to assess spontaneous brain activity in both groups. The structure (peripapillary retinal nerve fiber layer, pRNFL) and microvascular indices (the optic nerve head (ONH) whole image vessel density, ONH-wiVD, and peripapillary vessel density) were analyzed through optical coherence tomographic angiography imaging. The relationship between abnormal spontaneous brain activity and ophthalmological indices was analyzed using the Spearman’s rank correlation analysis.ResultsCompared with HCs, active TAO patients had increased fALFF in the right inferior temporal gyrus (R.ITG) and left posterior cingulate gyrus (L.PCC), but decreased fALFF in the right calcarine (R.CAL). The fALFF values in L.PCC were positively correlated with peripapillary vessel density, whereas fALFF values in R.CAL were negatively related to peripapillary vessel density.ConclusionsThis study demonstrates that changes in spontaneous brain activity of active TAO are accompanied by peripapillary microvascular variations. These results provide insights into the pathophysiological mechanisms of active TAO. In addition, the combination of fALFF values and peripapillary vessel density may be served as important references for better clinical decision making

    Initiation of the Hypothalamic–Pituitary–Gonadal Axis in Young Girls Undergoing Central Precocious Puberty Exerts Remodeling Effects on the Prefrontal Cortex

    Get PDF
    Central precocious puberty (CPP) has been shown to exert significant effects on psychosocial development. These early puberty-related hormones and psychosocial functional changes are considered to be associated with specific brain development. However, the biological mechanisms underlying the sculpting of human brain architecture and modulation of psychosocial transformation by puberty-related hormonal maturation remain elusive, especially during the early phase of CPP. The current investigation aims to specify the brain regions in which early hormone-related maturation effects occur during CPP and their relationships with psychological functions. 65 young girls (aged 4.3–8.0 years) underwent structural imaging on a 3T MR system, completed psychological tests and performed the gonadotropin-releasing hormone (GnRH) stimulation test to identify hormonal manifestations of hypothalamic–pituitary–gonadal axis (HPG axis) activation. Based on the GnRH test, 28 young girls were identified with CPP, whereas the other 37 girls were identified with non-central precocious puberty (NCPP). Cortical parameters were calculated and compared between the two groups after adjusting for age, weight, and height. Brain regions showing group differences were extracted and correlated with serum hormone levels and psychological parameters. The CPP girls showed thinner cortices primarily in the right rostral middle frontal cortex. This morphological difference was positively correlated with stimulated estradiol (E2) levels. Further, higher E2 levels were significantly associated with higher hyperactivity scores. Premature HPG axis activation in CPP girls at an early stage appears to exert remodeling effects on brain anatomy, primarily in the prefrontal cortex, which may affect psychological development following the emergence of robust changes in sex hormones

    Exploring Safety–Stability Tradeoffs in Cooperative CAV Platoon Controls with Bidirectional Impacts

    No full text
    Advanced sensing technologies and communication capabilities of Connected and Autonomous Vehicles (CAVs) empower them to capture the dynamics of surrounding vehicles, including speeds and positions of those behind, enabling judicious responsive maneuvers. The acquired dynamics information of vehicles spurred the development of various cooperative platoon controls, particularly designed to enhance platoon stability with reduced spacing for reliable roadway capacity increase. These controls leverage abundant information transmitted through various communication topologies. Despite these advancements, the impact of different vehicle dynamics information on platoon safety remains underexplored, as current research predominantly focuses on stability analysis. This knowledge gap highlights the critical need for further investigation into how diverse vehicle dynamics information influences platoon safety. To address this gap, this research introduces a novel framework based on the concept of phase shift, aiming to scrutinize the tradeoffs between the safety and stability of CAV platoons formed upon bidirectional information flow topology. Our investigation focuses on platoon controls built upon bidirectional information flow topologies using diverse dynamics information of vehicles. Our research findings emphasize that the integration of various types of information into CAV platoon controls does not universally yield benefits. Specifically, incorporating spacing information can enhance both platoon safety and string stability. In contrast, velocity difference information can improve either safety or string stability, but not both simultaneously. These findings offer valuable insights into the formulation of CAV platoon control principles built upon diverse communication topologies. This research contributes a nuanced understanding of the intricate interplay between safety and stability in CAV platoons, emphasizing the importance of information dynamics in shaping effective control strategies

    Robust adaptive position control of automotive electronic throttle valve using PID-type sliding mode technique

    No full text
    In this paper, a robust adaptive position controller is proposed for vehicle electronic throttle (ET) valve systems. In comparison with the traditional throttle control schemes, we develop an adaptive sliding mode control for the purpose of eliminating the influences of the parametric uncertainties and nonlinearities, which involve friction, gear backlash, and return spring limp-home. It is shown in this paper that not only the uncertainty bound but also the control gains are online estimated by the adaptive laws, and thus their bound information is no longer required, which ensures a robust tracking performance. Simulation results demonstrate the excellent tracking performance of the proposed control in terms of transient and steady-state performance

    Adaptive fault-tolerant consensus for a class of uncertain nonlinear second-order multi-agent systems with circuit implementation

    No full text
    In this paper, a robust fault-tolerant consensus control strategy and its circuit implementation method are proposed for a class of nonlinear second-order leader-following multi-agent systems against multiple actuator faults and time-varying state/input-dependent system uncertainties. The faults of partial loss of actuator effectiveness and bias-actuators are considered without knowing eventual faulty information. The uncertainties are supposed to be structured and to satisfy integral quadratic constraints. The nonlinear dynamics of underlying systems are described by linear state-dependent functions based on the differential mean value theorem. By designing adaptive schemes and state-feedback control gains, a novel distributed control strategy is constructed to ensure the asymptotic consensus of agents in the presence of actuator faults, uncertainties, and nonlinear dynamics. The control strategy is further physically implemented based on the circuit theory. The efficiency of the developed control circuits is verified by a multiple coupled nonlinear forced pendulum system based on a circuit simulation software

    Energy-Optimal Speed Control for Electric Vehicles on Signalized Arterials

    No full text
    corecore