17 research outputs found

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Aeroelastic Topology Optimization of Wing Structure Based on Moving Boundary Meshfree Method

    No full text
    The increasing structural flexibility of large aircraft leads to significant aeroelastic effects. More efficient topology optimization techniques are required for the design to further take advantage of aeroelasticity and obtain lightweight structures. This paper proposes a moving boundary meshfree topology optimization that combines the Galerkin method of weighted residuals and non-uniform rational B-splines (NURBS). The solution domain is described by the control points of NURBS and its property is calculated adaptively with an integration subtraction technique. The minimal compliance is searched for using the globally convergent method of moving asymptotes (GCMMA) by designing the locations of control points as subject to volume and flux constraints. The method is first applied to a typical two-dimensional design example with symmetric boundary conditions. The results show that the shape constraints can be conveniently applied, and smoother boundaries are obtained with fewer parameters. Then, a three-dimensional wing structure with asymmetric boundary conditions is optimized. A three-dimensional flight load that combines the high-order-panel and meshfree methods is employed to calculate the elastic loads and update asymmetric external loads during the optimization process. The designed wing satisfies engineering requirements and the presented method can solve the practical topology optimization problems of three-dimensional structures

    Aeroelastic Optimization Design of the Global Stiffness for a Joined Wing Aircraft

    No full text
    Due to the complexity and particularity of the joined wing layout, traditional design methods for the global stiffness of a high-aspect wing are not applicable for a joined wing. Herein, a beam-frame model and a three-dimensional wing-box model are built to solve the global stiffness aeroelastic optimization design problem for a joined wing. The goal is to minimize the weight, and the constraints are the overall aeroelastic requirements. Based on a genetic algorithm, two methods for the beam-frame model and one method for the three-dimensional model are used for comparative analysis. The results show that the optimization method for a diagonal beam section and the optimization method for an exponential/linear combination function fit are adequate for optimizing and designating the joined wing global stiffness. The distributions obtained using the two methods have good consistency and are similar to the distribution of the three-dimensional model. The stiffness distribution data and the beam section parameters can be converted from each other, which is convenient for redesigning the structure parameters using the stiffness distribution data, and is valuable for engineering applications

    Semianalytical Research on Aerothermoelastic Behaviors of Functionally Graded Plates under Arbitrary Temperature Fields in Hypersonic Vehicles

    No full text
    Hypersonic vehicles are susceptible to considerable aerodynamic heating and noticeable aerothermoelastic effects during flight due to their high speeds. Functionally graded materials (FGMs), which enable continuous changes in material properties by varying the ratio of different materials, provide both thermal protection and load-bearing capabilities. Therefore, they are widely used in thermal protection structures for hypersonic vehicles. In this work, the aerothermoelastic behaviors of functionally graded (FG) plates under arbitrary temperature fields are analyzed via a semianalytical method. This research develops a method considering the influence of thermal loading, specifically the decrease in stiffness due to thermal stresses, as well as the correlation between material properties and temperatures under arbitrary temperature fields, based on Ritz’s method. The classical plate theory, von–Karman’s large defection plate theory and piston theory are employed to formulate the strain energy, kinetic energy and external work functions of the system. This paper presents a novel analysis of static aerothermoelasticity of FG plates, in addition to the linear/nonlinear flutter under arbitrary temperature fields, such as uniform, linear and nonlinear temperature fields. In addition, the effects of the volume fraction index, dynamic pressure, and temperature increase on the aerothermoelastic characteristics of FG plates are analyzed

    Evaluation of AlphaFold2 Structures for Hit Identification across Multiple Scenarios

    No full text
    The introduction of AlphaFold2 (AF2) has sparked significant enthusiasm and generated extensive discussion within the scientific community, particularly among drug discovery researchers. Although previous studies have addressed the performance of AF2 structures in virtual screening (VS), a more comprehensive investigation is still necessary considering the paramount importance of structural accuracy in drug design. In this study, we evaluate the performance of AF2 structures in VS across three common drug discovery scenarios: targets with holo, apo, and AF2 structures; targets with only apo and AF2 structures; and targets exclusively with AF2 structures. We utilized both the traditional physics-based Glide and the deep-learning-based scoring function RTMscore to rank the compounds in the DUD-E, DEKOIS 2.0, and DECOY data sets. The results demonstrate that, overall, the performance of VS on AF2 structures is comparable to that on apo structures but notably inferior to that on holo structures across diverse scenarios. Moreover, when a target has solely AF2 structure, selecting the holo structure of the target from different subtypes within the same protein family produces comparable results with the AF2 structure for VS on the data set of the AF2 structures, and significantly better results than the AF2 structures on its own data set. This indicates that utilizing AF2 structures for docking-based VS may not yield most satisfactory outcomes, even when solely AF2 structures are available. Moreover, we rule out the possibility that the variations in VS performance between the binding pockets of AF2 and holo structures arise from the differences in their biological assembly composition
    corecore