73 research outputs found

    Synthesis of heteroatom-doped ZnO nanoparticles as an efficient visible light photocatalyst and its photoelectrochemical performance

    Get PDF
    Heteroatom-doped ZnO nanoparticles (Zn1-xNixO NPs) have been synthesized by a simple solvothermal approach. The photocatalytic activity of the products has been evaluated by a photoassisted degradation of Rhodamine B in aqueous solution under visible light irradiation. All the heteroatom-doped semiconductors exhibit better photocatalytic activities than pure ZnO, with the 1 mol% Ni2+-doped ZnO showing the best photocatalytic activity. From the transient photocurrent response and electrochemical impedance spectroscopic experiments it is observed that the photogenerated charges of the Ni-doped ZnO show longer lifetime and higher separation than that of pure ZnO, leading to its superior visible light photoactivity. The active species tests indicate that the hydroxyl radical and active holes were primarily responsible for the enhanced photocatalytic performance of Rhodamine B, and the superoxide radical takes part partially in the oxidation process. A possible photocatalytic mechanism is proposed. Good photostability and reusability of the product show that the studied nanoparticles have potential application in dye wastewater treatment

    Triptolide Inhibits the Proliferation of Prostate Cancer Cells and Down-Regulates SUMO-Specific Protease 1 Expression

    Get PDF
    Recently, traditional Chinese medicine and medicinal herbs have attracted more attentions worldwide for its anti-tumor efficacy. Celastrol and Triptolide, two active components extracted from the Chinese herb Tripterygium wilfordii Hook F (known as Lei Gong Teng or Thunder of God Vine), have shown anti-tumor effects. Celastrol was identified as a natural 26 s proteasome inhibitor which promotes cell apoptosis and inhibits tumor growth. The effect and mechanism of Triptolide on prostate cancer (PCa) is not well studied. Here we demonstrated that Triptolide, more potent than Celastrol, inhibited cell growth and induced cell death in LNCaP and PC-3 cell lines. Triptolide also significantly inhibited the xenografted PC-3 tumor growth in nude mice. Moreover, Triptolide induced PCa cell apoptosis through caspases activation and PARP cleavage. Unbalance between SUMOylation and deSUMOylation was reported to play an important role in PCa progression. SUMO-specific protease 1 (SENP1) was thought to be a potential marker and therapeutical target of PCa. Importantly, we observed that Triptolide down-regulated SENP1 expression in both mRNA and protein levels in dose-dependent and time-dependent manners, resulting in an enhanced cellular SUMOylation in PCa cells. Meanwhile, Triptolide decreased AR and c-Jun expression at similar manners, and suppressed AR and c-Jun transcription activity. Furthermore, knockdown or ectopic SENP1, c-Jun and AR expression in PCa cells inhibited the Triptolide anti-PCa effects. Taken together, our data suggest that Triptolide is a natural compound with potential therapeutic value for PCa. Its anti-tumor activity may be attributed to mechanisms involving down-regulation of SENP1 that restores SUMOylation and deSUMOyaltion balance and negative regulation of AR and c-Jun expression that inhibits the AR and c-Jun mediated transcription in PCa

    Partial asynchrony of coniferous forest carbon sources and sinks at the intra-annual time scale.

    Get PDF
    As major terrestrial carbon sinks, forests play an important role in mitigating climate change. The relationship between the seasonal uptake of carbon and its allocation to woody biomass remains poorly understood, leaving a significant gap in our capacity to predict carbon sequestration by forests. Here, we compare the intra-annual dynamics of carbon fluxes and wood formation across the Northern hemisphere, from carbon assimilation and the formation of non-structural carbon compounds to their incorporation in woody tissues. We show temporally coupled seasonal peaks of carbon assimilation (GPP) and wood cell differentiation, while the two processes are substantially decoupled during off-peak periods. Peaks of cambial activity occur substantially earlier compared to GPP, suggesting the buffer role of non-structural carbohydrates between the processes of carbon assimilation and allocation to wood. Our findings suggest that high-resolution seasonal data of ecosystem carbon fluxes, wood formation and the associated physiological processes may reduce uncertainties in carbon source-sink relationships at different spatial scales, from stand to ecosystem levels

    The kinesin light chain‐2, a target of mRNA stabilizing protein HuR, inhibits p53 protein phosphorylation to promote radioresistance in NSCLC

    No full text
    Abstract Background Radioresistance hinders radiotherapy for the treatment of lung cancer. Kinesin light chain‐2 (KLC2) has been found to be upregulated in lung cancer and also to be associated with poor prognosis. This study aimed to investigate the effect of KLC2 on radiosensitivity in lung cancer. Methods The radioresistant role of KLC2 was determined by colony formation, neutral comet assay, and γH2AX immunofluorescent staining assay. We further verified the function of KLC2 in a xenograft tumor model. The downstream of KLC2 was identified through gene set enrichment analysis and validated by western blot. Finally, we analyzed clinical data from the TCGA database to reveal the upstream transcription factor of KLC2, which was validated by RNA binding protein immunoprecipitation assay. Results Here, we found that downregulation of KLC2 could significantly reduce colony formation, increase γH2AX level, and double‐stranded DNA breaks in vitro. Meanwhile, overexpressed KLC2 significantly increased the proportion of the S phase in lung cancer cells. KLC2 knockdown could activate P53 pathway, and ultimately promoting radiosensitivity. The mRNA of KLC2 was observed to bind with Hu‐antigen R (HuR). The mRNA and protein expression of KLC2 in lung cancer cells was significantly reduced when combined with siRNA‐HuR. Interestingly, KLC2 overexpression significantly increased the expression of HuR in lung cancer cells. Conclusion Taken together, these results indicated that HuR‐KLC2 forms a positive feedback loop, which decreases the phosphorylation of p53 and thereby weaken the radiosensitivity of lung cancer cells. Our findings highlight the potential prognosis and therapeutic target value of KLC2 in lung cancer patients treated with radiotherapy

    Long cavity and low repetition rate passively mode-locked fiber laser with high-energy right angle trapezoid shaped soliton in anomalous dispersion regime

    No full text
    A long cavity passively mode locked fiber laser in the anomalous dispersion regime is reported. Nonlinear polarization rotation technique is employed to achieve the mode locking in our experiments. The output pulse from the fiber laser has the Gaussian profile spectrum and right angle trapezoid shape. Stable mode locking is achieved without using any dispersion-compensation components. The single pulse with an energy of 652 nJ and a repetition rate of 836 kHz at the pump power of approximately 500 mW is obtained and the duration of the output pulse increases linearly with the pump power. Different from the conventional low-energy soliton pulse, experimental results demonstrate that the passively mode locked fiber laser operating in the anomalous regime can also realize high energy pulse

    The Prevalence of <i>Trichinella spiralis</i> in Domestic Pigs in China: A Systematic Review and Meta-Analysis

    No full text
    The meta-analysis was performed to assess the prevalence of T. spiralis in domestic pigs in China. The potential studies from seven databases (Pubmed, Web of science, Scopus, Google Scholar, CNKI, Wanfang, CBM) were searched. I2, Cochran’s Q statistic and the funnel plot and Egger’s test were used to assess heterogeneity and publication bias, respectively. In this study, a total of 179 articles were captured in the initially screened. Of these, we finally obtained 39 significant articles (including 43 studies involving in 551,097 pigs) for the final analysis. We calculated using a random-effects model, and we found the overall infection rate was 0.04 (95% CI 0.03–0.06). The highest prevalence region was Guangxi. The funnel plot and Egger’s test showed no publication bias in our meta-analysis. In addition, this high heterogeneity index was suggestive of potential variations which could be due to regions, quality scores, detection methods, publication years, or samplings. These results indicated that T. spiralis were still prevalent in some areas in China. This highlights the need for an increased focus on implementing affordable, appropriate control programs to reduce economic losses and T. spiralis infection in domestic pigs in China

    Vacuum Brazing and Performance Evaluation of T2 Copper Block and 316L Stainless Steel Tube

    No full text
    The International Thermonuclear Experiment Reactor (ITER) Thermal shield (TS) serves as a cryogenic heat exchanger to maintain the thermal stability of the ITER superconducting magnet coil, which is critical to the control of the plasma during the operation of the ITER device. The TS is composed of long-length 316L stainless steel (SS) and copper as brazed joints. In this case, a feasible fabrication design for the CCS TS is presented, accomplished by three kinds of joining processes (vacuum brazing, friction stir weld, and TIG weld). In the reliable fabrication design, the brazing quality of the as-brazed long-distance 316L SS and copper joints plays a critical role in the thermal conductivity performance of the ITER thermal shield. Therefore, a high-quality vacuum brazing process of long-length SS/Cu joints applied in a low-temperature superconductor magnet system was first studied. The macro metallography analysis demonstrates the braze ratio of the samples is 100%, and no crack or defect is observed in the samples. The microstructural characterization reveals the brazing seams are composed of silver-based Ag-rich eutectic. The micro-shear test indicates that the shear strength of the 316L tube and copper joint is 205 MPa, with the fracture position located on the copper side; this zone will be the most vulnerable zone of the joints. In addition, the SEM results illustrated that the shear fracture morphology displayed a ductile fracture feature. The test results demonstrated that the highly precise depth drilling employed in this paper ensured a good control of the brazing clearance, resulting in a 100% braze ratio for the long-length SS/Cu joints. Therefore, it can be concluded that the brazing process can be applied in the ITER TS for the good thermal conductivity performance of long-length SS/Cu-brazing joints

    Tool Wear and Surface Integrity of Îł-TiAl Cryogenic Coolant Machining at Various Cutting Speed Levels

    No full text
    High-speed machining of Îł-TiAl alloy is a significant challenge due to high cutting temperatures. From the perspective of environmental protection and improving tool life, appropriate cooling strategies should be adopted. Compared with dry and conventional flood cooling conditions, the feasibility of machining Îł-TiAl in cryogenic LN2 cooling conditions was discussed. The cutting force, tool wear and its mechanism, and surface roughness, as well as sub-surface morphology characteristics, were studied by combining macro and micro techniques. The results revealed that the wear morphology of the rake and flank face under the three cooling media shows different degrees. The crater wear of the rake face is expanded at high speeds and then progresses into more serve flaking and notching wear. The main wear pattern on the flank face is gradually transformed from adhesive wear to diffusion and oxidation wear at high speeds in dry machining. In the LN2 condition, the diffusion of workpiece elements and cutting-edge oxidation were restrained. The wear pattern is still mainly adhesive wear. In addition, cryogenic machining shows significant advantages in reducing cutting force, suppressing heat-affected zone, improving surface quality, and inhibiting micro-lamellar deformation

    Synthesis of heteroatom-doped ZnO nanoparticles as an efficient visible light photocatalyst and its photoelectrochemical performance

    No full text
    566-570<span style="font-size:9.0pt;font-family: " times="" new="" roman";mso-fareast-font-family:"times="" roman";mso-bidi-font-family:="" "times="" roman";mso-ansi-language:en-us;mso-fareast-language:en-us;="" mso-bidi-language:ar-sa"="" lang="EN-US">Heteroatom-doped ZnO nanoparticles (Zn1-xNixO NPs) have been synthesized by a simple solvothermal approach. The photocatalytic activity of the products has been evaluated by a photoassisted degradation of Rhodamine B in aqueous solution under visible light irradiation. All the heteroatom-doped semiconductors exhibit better photocatalytic activities than pure ZnO, with the 1 mol% Ni2+-doped ZnO showing the best photocatalytic activity. From the transient photocurrent response and electrochemical impedance spectroscopic experiments it is observed that the photogenerated charges of the Ni-doped ZnO show longer lifetime and higher separation than that of pure ZnO, leading to its superior visible light photoactivity. The active species tests indicate that the hydroxyl radical and active holes were primarily responsible for the enhanced photocatalytic performance of Rhodamine B, and the superoxide radical takes part partially in the oxidation process. A possible photocatalytic mechanism is proposed. Good photostability and reusability of the product show that the studied nanoparticles have potential application in dye wastewater treatment.</span

    Research on Rock Strength Test Based on Electro-Hydraulic Servo Point Load Instrument

    No full text
    A new electro-hydraulic servo point load instrument was designed to address the problem that the existing point load instrument cannot be loaded continuously and uniformly; different loading rates (using three loading rates: 0.1, 0.5, 1.0 kN/s) were conducted on fine-crystalline granite, coarse-crystalline granite, and siltstone (each rock sample contains four sizes: 203, 303, 403, 503 mm3) for point load tests. Firstly, the influence of loading rate on the axial stress distribution of rock sample loading was investigated in conjunction with the rock strength damage theory. Next, the influence of rock sample size and loading rate on different standard point load strength evaluation methods was analyzed to find a reasonable evaluation method and loading rate and range of rock sample size. Finally, the relationship between standard point load strength and uniaxial compressive strength was analyzed on this basis to obtain its empirical conversion formula. The results show that: (1) With the increase in the loading rate of point load, the tensile and compressive stresses in the loading axis increase, and the compressive stresses near the center of the loading axis of the rock sample are more influenced by the loading rate; the standard point load strength increases with the increase in the loading rate, but the increase in the standard point load strength decreases when the loading rate increases to a certain range. (2) With the increase in size, the standard point load strength solved by method I, method III, and method IV has an obvious size effect, while the size effect of standard point load strength solved by method II is not obvious. (3) The conversion factors of fine-crystalline granite, coarse-crystalline granite, and siltstone were obtained by zero-intercept linear regression analysis as 16.80, 15.32, and 14.60, respectively, which indicated that the conversion factors of rocks with high strength were higher than those of rocks with low strength. The present research results can provide theoretical support for revising the existing point load strength calculation equations
    • 

    corecore