145 research outputs found
A Comprehensive Review of One-Dimensional Metal-Oxide Nanostructure Photodetectors
One-dimensional (1D) metal-oxide nanostructures are ideal systems for exploring a large number of novel phenomena at the nanoscale and investigating size and dimensionality dependence of nanostructure properties for potential applications. The construction and integration of photodetectors or optical switches based on such nanostructures with tailored geometries have rapidly advanced in recent years. Active 1D nanostructure photodetector elements can be configured either as resistors whose conductions are altered by a charge-transfer process or as field-effect transistors (FET) whose properties can be controlled by applying appropriate potentials onto the gates. Functionalizing the structure surfaces offers another avenue for expanding the sensor capabilities. This article provides a comprehensive review on the state-of-the-art research activities in the photodetector field. It mainly focuses on the metal oxide 1D nanostructures such as ZnO, SnO2, Cu2O, Ga2O3, Fe2O3, In2O3, CdO, CeO2, and their photoresponses. The review begins with a survey of quasi 1D metal-oxide semiconductor nanostructures and the photodetector principle, then shows the recent progresses on several kinds of important metal-oxide nanostructures and their photoresponses and briefly presents some additional prospective metal-oxide 1D nanomaterials. Finally, the review is concluded with some perspectives and outlook on the future developments in this area
XPO1 expression worsens the prognosis of unfavorable DLBCL that can be effectively targeted by selinexor in the absence of mutant p53
Additional file 1. Table S1: Clinicopathologic and molecular characteristics of DLBCL patients with high or low XPO1 expression. Table S2: Significantly differentially expressed genes between XPO1high and XPO1low DLBCL patients with concurrent TP53 mutation and high MYC expression. Figure S1: Biomarker study for XPO1 and selinexor. (A–B) XPO1high expression showed significant adverse prognostic impact in the ABC subtype but not the GCB subtype of DLBCL. (C) XPO1high expression showed a trend of unfavorable prognostic effect on PFS in MYC-rearranged (MYC-R+) DLBCL. (D) XPO1high expression was associated with significantly poorer survival in DLBCL patients with wild type (Wt) TP53. (E) ABC-DLBCL and GCB-DLBCL cells showed similar sensitivity to the cytotoxicity of selinexor. (F) TP53 mutation (Mut-TP53) significantly reduced the anti-lymphoma efficacy of selinexor in HGBCL-DH cells. IC50 values were calculated by GraphPad Prism 8 based on the cell viability data after 72-hour treatment
The epidemiological patterns of non-Hodgkin lymphoma: global estimates of disease burden, risk factors, and temporal trends
BackgroundThe incidence of non-Hodgkin’s lymphoma (NHL) has increased steadily over the past few decades. Elucidating its global burden will facilitate more effective disease management and improve patient outcomes. We explored the disease burden, risk factors, and trends in incidence and mortality in NHL globally.MethodsThe up-to-date data on age-standardized incidence and mortality rates of NHL were retrieved from the GLOBOCAN 2020, CI5 volumes I-XI, WHO mortality database, and Global Burden of Disease (GBD) 2019, focusing on geographic disparities worldwide. We reported incidence and mortality by sex and age, along with corresponding age-standardized rates (ASRs), the average annual percentage change (AAPC), and future burden estimates to 2040.ResultsIn 2020, there were an estimated 545,000 new cases and 260,000 deaths of NHL globally. In addition, NHL resulted in 8,650,352 age-standardized DALYs in 2019 worldwide. The age-specific incidence rates varied drastically across world areas, at least 10-fold in both sexes, with the most pronounced increase trend found in Australia and New Zealand. By contrast, North African countries faced a more significant mortality burden (ASR, 3.7 per 100,000) than highly developed countries. In the past decades, the pace of increase in incidence and mortality accelerated, with the highest AAPC of 4.9 (95%CI: 3.6-6.2) and 6.8 (95%CI: 4.3-9.2) in the elderly population, respectively. Considering risk factors, obesity was positively correlated with age-standardized incidence rates (P< 0.001). And North America was the high-risk region for DALYs due to the high body mass index in 2019. Regarding demographic change, NHL incident cases are projected to rise to approximately 778,000 by 2040.ConclusionIn this pooled analysis, we provided evidence for the growing incidence trends in NHL, particularly among women, older adults, obese populations, and HIV-infected people. And the marked increase in the older population is still a public health issue that requires more attention. Future efforts should be directed at cultivating health awareness and formulating effective and locally tailored cancer prevention strategies, especially in most developing countries
Perioperative Toripalimab Plus Chemotherapy for Patients With Resectable Non-Small Cell Lung Cancer: The Neotorch Randomized Clinical Trial
IMPORTANCE: Adjuvant and neoadjuvant immunotherapy have improved clinical outcomes for patients with early-stage non-small cell lung cancer (NSCLC). However, the optimal combination of checkpoint inhibition with chemotherapy remains unknown.
OBJECTIVE: To determine whether toripalimab in combination with platinum-based chemotherapy will improve event-free survival and major pathological response in patients with stage II or III resectable NSCLC compared with chemotherapy alone.
DESIGN, SETTING, AND PARTICIPANTS: This randomized clinical trial enrolled patients with stage II or III resectable NSCLC (without EGFR or ALK alterations for nonsquamous NSCLC) from March 12, 2020, to June 19, 2023, at 50 participating hospitals in China. The data cutoff date for this interim analysis was November 30, 2022.
INTERVENTIONS: Patients were randomized in a 1:1 ratio to receive 240 mg of toripalimab or placebo once every 3 weeks combined with platinum-based chemotherapy for 3 cycles before surgery and 1 cycle after surgery, followed by toripalimab only (240 mg) or placebo once every 3 weeks for up to 13 cycles.
MAIN OUTCOMES AND MEASURES: The primary outcomes were event-free survival (assessed by the investigators) and the major pathological response rate (assessed by blinded, independent pathological review). The secondary outcomes included the pathological complete response rate (assessed by blinded, independent pathological review) and adverse events.
RESULTS: Of the 501 patients randomized, 404 had stage III NSCLC (202 in the toripalimab + chemotherapy group and 202 in the placebo + chemotherapy group) and 97 had stage II NSCLC and were excluded from this interim analysis. The median age was 62 years (IQR, 56-65 years), 92% of patients were male, and the median follow-up was 18.3 months (IQR, 12.7-22.5 months). For the primary outcome of event-free survival, the median length was not estimable (95% CI, 24.4 months-not estimable) in the toripalimab group compared with 15.1 months (95% CI, 10.6-21.9 months) in the placebo group (hazard ratio, 0.40 [95% CI, 0.28-0.57], P \u3c .001). The major pathological response rate (another primary outcome) was 48.5% (95% CI, 41.4%-55.6%) in the toripalimab group compared with 8.4% (95% CI, 5.0%-13.1%) in the placebo group (between-group difference, 40.2% [95% CI, 32.2%-48.1%], P \u3c .001). The pathological complete response rate (secondary outcome) was 24.8% (95% CI, 19.0%-31.3%) in the toripalimab group compared with 1.0% (95% CI, 0.1%-3.5%) in the placebo group (between-group difference, 23.7% [95% CI, 17.6%-29.8%]). The incidence of immune-related adverse events occurred more frequently in the toripalimab group. No unexpected treatment-related toxic effects were identified. The incidence of grade 3 or higher adverse events, fatal adverse events, and adverse events leading to discontinuation of treatment were comparable between the groups.
CONCLUSIONS AND RELEVANCE: The addition of toripalimab to perioperative chemotherapy led to a significant improvement in event-free survival for patients with resectable stage III NSCLC and this treatment strategy had a manageable safety profile.
TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04158440
Computational analysis of expression of human embryonic stem cell-associated signatures in tumors
<p>Abstract</p> <p>Background</p> <p>The cancer stem cell model has been proposed based on the linkage between human embryonic stem cells and human cancer cells. However, the evidences supporting the cancer stem cell model remain to be collected. In this study, we extensively examined the expression of human embryonic stem cell-associated signatures including core genes, transcription factors, pathways and microRNAs in various cancers using the computational biology approach.</p> <p>Results</p> <p>We used the class comparison analysis and survival analysis algorithms to identify differentially expressed genes and their associated transcription factors, pathways and microRNAs among normal vs. tumor or good prognosis vs. poor prognosis phenotypes classes based on numerous human cancer gene expression data. We found that most of the human embryonic stem cell- associated signatures were frequently identified in the analysis, suggesting a strong linkage between human embryonic stem cells and cancer cells.</p> <p>Conclusions</p> <p>The present study revealed the close linkage between the human embryonic stem cell associated gene expression profiles and cancer-associated gene expression profiles, and therefore offered an indirect support for the cancer stem cell theory. However, many interest issues remain to be addressed further.</p
Recent progress in one-dimensional ZnS nanostructures: Syntheses and novel properties
In this review, the progress made during the last two years with respect to the syntheses and novel properties of one-dimensional (1D) ZnS nanostructures is presented. Primarily the research on 1D ZnS nanostructures has been of growing interest owing to their promising applications in nanoscale optoelectronic devices. Diverse 1D ZnS nanostructures with delicately-tuned morphologies, sizes, and microstructures have been synthesized through relatively simple and well-controlled techniques. Some novel properties of the nanomaterials have been explored and the relationships between their structural features and functions have been understood gradually
A Broadband Differential-Fed Dual-Polarized Hollow Cylindrical Dielectric Resonator Antenna for 5G Communications
A broadband differential-fed dual-polarized hollow cylindrical dielectric resonator antenna (DRA) is proposed in this article. It makes use of the HEM111, HEM113, and HEM115 modes of the cylindrical hollow DRA. The proposed DRA is simply fed by two pairs of conducting strips and each pair of strips is provided with the out-of-phase signals. After introducing four disconnected air holes into the DRA, a broadband characteristic is achieved, with little effect on the antenna gain of its higher-order modes. To verify this idea, frosted K9-glass is applied to fabricate the hollow cylindrical DRA. The differential S-parameters, radiation patterns, and antenna gain of the DRA are studied. It is found that the proposed differential-fed dual-polarized DRA is able to provide a broad differential impedance bandwidth of ~68% and a high differential-port isolation better than ~46 dB. Moreover, symmetrical broadside radiation patterns are observed across the whole operating band. The proposed DRA covers the frequency bands including the 5G-n77 (3.4–4.2 GHz), 5G-n79 (4.4–5.0 GHz), WLAN-5.2 GHz (5.15–5.35 GHz), and WLAN-5.8 GHz (5.725–5.825 GHz), which can be used for 5G communications
- …