3 research outputs found

    Bivalent Recombinant Vaccine for Botulinum Neurotoxin Types A and B Based on a Polypeptide Comprising Their Effector and Translocation Domains That Is Protective against the Predominant A and B Subtypes ▿

    No full text
    The botulinum neurotoxins (BoNTs) are a large family of extremely potent, neuroparalytic, dichain proteins which act at the peripheral nervous system. The wide genetic diversity observed with this neurotoxin family poses a significant challenge for the development of an effective botulinum vaccine. The present study describes a vaccine development platform based on protein fragments representing the N-terminal two-thirds of each toxin molecule. These fragments, designated LHN, comprise the light chain and translocation domains of each neurotoxin and are devoid of any neuron-binding activity. Using codon-optimized genes, LHN fragments derived from BoNT serotypes A and B were expressed in Escherichia coli in high yield with >1 g of purified, soluble fragment recoverable from 4.5 liter-scale fermentations. The protective efficacy of LHN/A was significantly enhanced by treatment with formaldehyde, which induced intramolecular cross-linking but virtually no aggregation of the fragment. A single immunization of the modified fragment protected mice from challenge with a 103 50% lethal dose (LD50) of BoNT/A1 with an 50% effective dose (ED50) of 50 ng of the vaccine. In similar experiments, the LHN/A vaccine was shown to protect mice against challenge with BoNT/A subtypes A1, A2, and A3, which is the first demonstration of single-dose protection by a vaccine against the principal toxin subtypes of BoNT/A. The LHN/B vaccine was also highly efficacious, giving an ED50 of ∼140 ng to a challenge of 103 LD50 of BoNT/B1. In addition, LHN/B provided single-dose protection in mice against BoNT/B4 (nonproteolytic toxin subtype)

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore