553 research outputs found

    Factors Influencing the Enthusiasm to Disclose Environment Accounting Information -Econometric Analysis from SSE Data-

    Get PDF
    Protection of the environment is one of the key issues for sustainable development in China, and it must be implemented by individual companies. It is an important field of study for economists to describe and analyze the enthusiasm of individual companies to protect environment. We chose typical companies listed on the Shanghai Stock Exchange (SSE) to describe and analyze their enthusiasm for environmental protection using the Probit model, and came to the conclusion that three factors influence the disclosure of the environmental accounting information (EAI), i.e., whether the company accepting the restriction of ISO14001 standards, the rate of increase in the primary business and the proportion of national capital. This is the first research about the environmental accounting information disclosure (EAID) of Chinese companies by the method of econometrics, and it is therefore significant in terms of both theory and practice

    Cold storage condensation heat recovery system with a novel composite phase change material

    Get PDF
    © 2016 Elsevier Ltd. Using condensation heat from cold storage refrigeration systems to provide heat for domestic hot water preparation and industrial hot water supply promotes energy conservation. However, few studies have investigated cold storage condensation heat recovery using phase change materials (PCMs). In this study, a cold storage condensation heat recovery system that uses PCMs has been designed and analysed. According to the principle of energy cascade recycling, different operation modes could be effectively switched to recycle condensation heat. Furthermore, a novel and suitable phase change composite material is developed for cold storage condensation heat recovery, which has a relatively large latent heat, high thermal conductivity, and an appropriate phase change temperature (i.e. 80 °C). With carnauba wax (CW) as the PCM and expanded graphite (EG) as the additive, a composite was developed with an optimal mass ratio of CW:EG = 10:1. The thermal and physical properties and the interior structure of the composite were then investigated using a scanning electron microscope (SEM), thermal constants analyser (Hot Disk), differential scanning calorimeter (DSC), and Fourier transform infrared spectrometer (FT-IR). Furthermore, experiments on the melting and solidification processes and accelerated thermal cycling were also conducted. It was found that at the optimal mass ratio of 10:1, the temperatures of the CW/EG composite in the melting and solidification processes were 81.98 °C and 80.43 °C, respectively, while the corresponding latent heats were 150.9 J/g and 142.6 J/g, respectively. During both processes, CW could retain its original worm-like structure after being completely adsorbed by EG. Compared to only CW, the melting and solidification time of the CW/EG composite were reduced by 81.7% and 55.3%, respectively, while its thermal conductivity was 16.4 times higher. After 1000 runs of accelerated thermal cycling, the endothermic/exothermic phase change temperatures of CW and the CW/EG composite increased by only 0.42%/0.42% and 0.23%/0.27%, respectively, while their endothermic/exothermic latent heats decreased by 4.96%/4.78% and 2.05%/3.44%, respectively. These results indicate that both CW and the CW/EG composite have excellent thermal reliability, while the CW/EG composite exhibits a slightly better performance. Finally, the experiments show that the CW/EG composite has desirable thermal and physical properties such as high thermal conductivity and reliability; Hence, it has good potenti al as a material for facilitating condensation heat recovery from cold storage refrigeration systems

    Novel research methods for energy use, carbon emissions, and economic growth: evidence from the USA

    Get PDF
    Researchers and governments are debating whether to use renewable energy sources or fossil fuels. The impact of the final decision on developed and developing regions is either the same or different. To investigate the answers to these issues, the current study used panel data for the US economy from 1985 to 2020. Following preliminary diagnostic testing, the researchers discovered that the data is stationary at the level and has longrun cointegration. Furthermore, the influence of economic growth (GDP), nonrenewable energy (EU), and renewable energy consumption was investigated using the quantile regression approach (REC). The analysis discovered that the impact of GDP and the EU on carbon emissions is lowest in industrialized countries and highest in underdeveloped countries. However, the corrective influence of REC on carbon emissions is lowest in industrialized countries and highest in developing regions. Although the GDP and EU have less influence on carbon emissions, the corrective effect of REC is also the least; consequently, policymakers should encourage the aggregate production system to use more REC than the EU as a sustainable alternative

    Ca2+ channel subunit a 1D inhibits endometriosis cell apoptosis and mediated by prostaglandin E2

    Get PDF
    Objectives: Endometriosis is considered as a chronic pelvic inflammatory disease and prostaglandin E2(PGE2) (a kind of the inflammatory cytokines) was increased in the endometriosis patient’s peritoneal fluid . Ca2+ signal and Ca2+ channels play an important role in cell apoptosis. This study was to explore the L-type calcium channel (Cav1.3) expression and its biological function in endometriosis. Furthermore the molecular mechanism between Cav1.3 and PGE2 was also clarified. Material and methods: The real-time PCR and immunohistochemical were used to detect the expression of Cav1.3. Apoptosis was detected by Flow cytometry assay and Western blot assay. Results: Cav1.3 was high expression in endometriosis tissue and primary endometrial stromal cells (hEM15A). Treatment with PGE2 rapidly inhibited apoptosis and increased Cav1.3 expression in hEM15A . The silencing of Cav1.3 promoted apoptosis, which was unchanged after PGE2 treatment. Moreover, the inhibition of Cav1.3 by shRNA transfection activated cleaved PARP and cleaved caspase-3. Conclusions: These available evidences suggest that Cav1.3 is required for PGE2 induction apoptosis and relates to the pathophysiology of endometriosis. Interference with Cav1.3 may offer a neo-therapeutic window in endometriosis treatment

    Effects of assembly and mutations outside the active site on the functional pH dependence of Escherichia coli aspartate transcarbamylase

    Get PDF
    Electrostatics are central to the function and regulation of Escherichia coli aspartate transcarbamylase, and modeling has suggested that long range electrostatic effects are likely to be important (Glackin, M. P., McCarthy, M. P., Mallikarachchi, D., Matthew, J. B., and Allewell, N. M. (1989) Proteins Struct. Funct. Genet. 5, 66-77; Oberoi, H., Trikha, J., Yuan, X., and Allewell, N. M. (1995) Proteins Struct. Funct. Genet., in press). To investigate this possibility from an experimental standpoint, we have examined the effects both of assembly and of removing ionizable and polar side chains outside the active site (Glu-50, Tyr-165, and Tyr-240) on the pH dependence of the kinetic parameters of aspartate transcarbamylase. The holoenzyme (c6r6) assembles from three regulatory dimers (r2) and two catalytically active trimers (c3). pH dependences of the enzyme kinetic parameters suggest that the mechanisms of productive binding of L-Asp to the binary complexes of the catalytic subunit (c3) and holoenzyme (c6r6) with carbamyl phosphate are different. In contrast, the Michaelis complex appears similar for both c3 and c6r6, except for pK shifts of ~1 pH unit. Results also indicate that the catalytic mechanism of the holoenzyme does not involve reverse protonation, as has recently been proposed for the catalytic trimer (Turnbull, J. L., Waldrop, G. L., and Schachman, H. K. (1992) Biochemistry 31, 6562-6569). The tyrosines at positions 165 and 240 are part of a cluster of interactions that links the catalytic subunits in the T state (the c1:c4 interface) and which is disrupted in the T → R transition. The effects of mutating the two Tyr residues are quite different: Y240F has higher than wild-type activity and affinity over the entire pH range, while Y165F has activity and affinity an order of magnitude lower than wild-type. Removal of the regulatory subunits from Y165F increases activity and affinity and restores the pH dependence of the wild-type catalytic subunit. Like Y165F, E50A has low activity and affinity over the entire pH range. Linkage analysis indicates that there is long range energetic coupling among the active site, the c:r subunit interfaces, and residue Y165. The substantial quantitative difference between Y165F and Y240F, both of which are at the c1:c4 interface about 14-16 Å from the closest active site, demonstrates specific path dependence, as opposed to general distance dependence, of interactions between this interface and the active site

    Relative Entropy in CFT

    Full text link
    By using Araki's relative entropy, Lieb's convexity and the theory of singular integrals, we compute the mutual information associated with free fermions, and we deduce many results about entropies for chiral CFT's which are embedded into free fermions, and their extensions. Such relative entropies in CFT are here computed explicitly for the first time in a mathematical rigorous way. Our results agree with previous computations by physicists based on heuristic arguments; in addition we uncover a surprising connection with the theory of subfactors, in particular by showing that a certain duality, which is argued to be true on physical grounds, is in fact violated if the global dimension of the conformal net is greater than 1.1.Comment: 31 page

    New logistics distribution route dispatching mode based on genetic algorithm-ant colony algorithm

    Get PDF
    Abstract For multi-target route optimization with constraint conditions, the mathematical model for logistics distribution route optimization is built to accelerate response speed of logistics enterprises to customers, improve service quality, and strengthen the satisfaction of customers, and a new algorithm with the combination of genetic and ant colony algorithms is proposed to solve the selection issues of such logistics route. Initial pheromone is formed with genetic algorithm, based on which the optimal solution is rapidly sought with ant colony algorithm, and complementary advantages are achieved between above two algorithms. Application examples and simulations are available for calculation, and the results show that such algorithm is practical and effective to optimize logistics distribution route

    Generalized convexities and generalized gradients based on algebraic operations

    Get PDF
    AbstractIn this paper, we investigate properties of generalized convexities based on algebraic operations introduced by Ben Tal [A. Ben Tal, On generalized means and generalized convex functions, J. Optim. Theory Appl. 21 (1977) 1–13] and relations between these generalized convexities and generalized monotonicities. We also discuss the (h,φ)-generalized directional derivative and gradient, and explore the relation between this gradient and the Clarke generalized gradient. Definitions of some generalized averages of the values of a generalized convex function at n equally spaced points based on the algebraic operations are also presented and corresponding results are obtained. Finally, the (φ,γ)-convexity is defined and some properties of (φ,γ)-convex functions are derived

    Coupled Cooling Method and Application of Latent Heat Thermal Energy Storage Combined with Pre-cooling of Envelope: Sensitivity Analysis and Optimization

    Get PDF
    This document is the Accepted Manuscript version of the following article: Xiangkui gao, Yanping Yuan, Hongwei Wu, and Xudong Zhao, ‘Coupled Cooling Method and Application of Latent Het Thermal Energy Storage Combined with Pre-cooling of Envelope: Sensitivity Analysis and Optimization’, Process Safety and Environmental Protection, first published online 9 March 2017. Under embargo. Embargo end date: 9 March 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ The version of record is available online at doi: http://dx.doi.org/10.1016/j.psep.2017.03.005 © 2017 Elsevier Ltd. All rights reserved.Cooling system for mine refuge chamber provides comfortable environment for miners to avoid heat damage. The existing cooling systems have their own application scopes and limitations. The coupled cooling method of Latent Heat Thermal Energy Storage (LHTES) combined with Pre-cooling of Envelope (PE) is a new free cooling method which is suitable for high-temperature, passive, impact and other harsh environment. Then, to improve the thermal comfort and reduce energy consumption, the effect of the pre-cooling temperature, melting temperature of PCM, aspect ratio and amounts of PCM unit on the indoor temperature are investigated in a systematic manner. Furthermore, the system is optimized and the generalized results for the evaluation parameter are given. Analysis of the results may lead to following main conclusions: (i) the method really controls the indoor temperature and the saving amount of PCM is more than 50% compared to the traditional LHTES systems; (ii) the Temperature Control(TC) performance of PCM would drop significantly if it melts more than 80%; (iii) under current operating conditions, the optimal melting temperature is about 29 °C and the aspect ratio of PCM unit is 60:500; (iv) per 1 °C the pre-cooling temperature dropped, 19% the actual amount of PCM decreased for the case studied.Peer reviewedFinal Accepted Versio

    Coupled Cooling Method and Application of Latent Heat Thermal Energy Storage Combined with Pre-cooling of Envelope: Optimization of Pre-cooling with Intermittent Mode

    Get PDF
    This document is the Accepted Manuscript version of the following article: Xiangkui Gao, Yanping Yuan, Hongwei Wu, Xiaoling Cao, and Xudong Zhao, ‘Coupled cooling method and application of latent heat thermal energy storage combined with pre-cooling of envelope: Optimization of pre-cooling with intermittent mode’, Sustainable Cities and Society, Vol. 38: 370-381, April 2018. Under embargo until 10 January 2019. The final, definitive version of this paper is available online via: https://doi.org/10.1016/j.scs.2018.01.014The coupled cooling method combining latent heat thermal energy storage and pre-cooling of the envelope (PE) is a new free-cooling method that is suitable for exposure to high temperatures and other types of harsh environments. PE plays the most critical role in the coupled cooling method. Long-term, continuous PE cannot only reduce energy storage capacity, but it also causes numerous energy waste. Thus, an intermittent operational mode is firstly proposed to improve the heat transfer performance and reduce energy consumption. A simplified numerical model of intermittent thermal storage is established, and the subsequent effects of intermittent ratio (IR) and intermittent period (IP) on cold storage performance have been systematically investigated. Furthermore, the operational period is divided into a cold storage period (CSP) and a cold preservation period (CPP), each with their own respective evaluation indices. Long-term intermittent PE is optimized, and an interchanging continuous/intermittent cold storage strategy is proposed. Under the current operating conditions, as compared with the conventional continuous mode, the duration of CSP is extended by 0–26%, yielding an annual cold storage energy consumption reduction of 68–78%. Thus, the current study demonstrates the significant potential of intermittent operational mode application in underground thermal energy storage systems.Peer reviewedFinal Accepted Versio
    corecore