124 research outputs found
Recommended from our members
Protective effect of human serum amyloid P on CCl4-induced acute liver injury in mice.
Human serum amyloid P (hSAP), a member of the pentraxin family, inhibits the activation of fibrocytes in culture and inhibits experimental renal, lung, skin and cardiac fibrosis. As hepatic inflammation is one of the causes of liver fibrosis, in the present study, we investigated the hepatoprotective effects of hSAP against carbon tetrachloride (CCl4)-induced liver injury. Our data indicated that hSAP attenuated hepatic histopathological abnormalities and significantly decreased inflammatory cell infiltration and pro-inflammatory factor expression. Moreover, CCl4-induced apoptosis in the mouse liver was inhibited by hSAP, as measured by terminal-deoxynucleotidyl transferase mediated nick-end labeling (TUNEL) assay and cleaved caspase-3 expression. hSAP significantly restored the expression of B cell lymphoma/leukemia (Bcl)-2 and suppressed the expression of Bcl-2-associated X protein (Bax) in vivo. The number of hepatocytes in early apoptosis stained with Annexin V was significantly reduced by 28-30% in the hSAP treatment group compared with the CCl4 group, and the expression of Bcl-2 was increased, whereas the expression of Bax and cleaved caspase-3 were significantly inhibited in the hSAP pre-treatment group compared with the CCl4 group. hSAP administration also inhibited the migration and activation of hepatic stellate cells (HSCs) in CCl4-injured liver and suppressed the activation of isolated primary HSCs induced by transforming growth factor (TGF)-β1 in vitro. Collectively, these findings suggest that hSAP exerts a protective effect againts CCl4-induced hepatic injury by suppressing the inflammatory response and hepatocyte apoptosis, potentially by inhibiting HSC activation
IL-10 plays a central regulatory role in the cytokines induced by hepatitis C virus core protein and polyinosinic acid:polycytodylic acid
Hepatitis C virus (HCV) can cause persistent infection and chronic liver disease, and viral factors are involved in HCV persistence. HCV core protein, a highly conserved viral protein, not only elicits an immunoresponse, but it also regulates it. In addition, HCV core protein interacts with toll-like receptors (TLRs) on monocytes, inducing them to produce cytokines. Polyinosinic acid:polycytodylic acid (polyI:C) is a synthetic analogue of double-stranded RNA that binds to TLR3 and can induce secretion of type I IFN from monocytes. Cytokine response against HCV is likely to affect the natural course of infection as well as HCV persistence. However, possible effects of cytokines induced by HCV core protein and polyI:C remain to be investigated. In this study, we isolated CD14+ monocytes from healthy donors, cultured them in the presence of HCV core protein and/or polyI:C, and characterized the induced cytokines, phenotypes and mechanisms. We demonstrated that HCV core protein- and polyI:C-stimulated CD14+ monocytes secreted tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-10, and type I interferon (IFN). Importantly, TNF-α and IL-1β regulated the secretion of IL-10, which then influenced the expression of signal transducer and activator of transcription 1 (STAT1) and interferon regulatory factor 1 (IRF1) and subsequently the production of type I IFN. Interestingly, type I IFN also regulated the production of IL-10, which in turn inhibited the nuclear factor (NF)-κB subunit, reducing TNF-α and IL-1β levels. Therefore, IL-10 appears to play a central role in regulating the production of cytokines induced by HCV core protein and polyI:C
CT−based radiomics signature for differentiating pyelocaliceal upper urinary tract urothelial carcinoma from infiltrative renal cell carcinoma
ObjectivesTo develop a CT-based radiomics model and a combined model for preoperatively discriminating infiltrative renal cell carcinoma (RCC) and pyelocaliceal upper urinary tract urothelial carcinoma (UTUC), which invades the renal parenchyma.Materials and methodsEighty patients (37 pathologically proven infiltrative RCCs and 43 pathologically proven pyelocaliceal UTUCs) were retrospectively enrolled and randomly divided into a training set (n = 56) and a testing set (n = 24) at a ratio of 7:3. Traditional CT imaging characteristics in the portal venous phase were collected by two radiologists (SPH and ZXL, who have 4 and 30 years of experience in abdominal radiology, respectively). Patient demographics and traditional CT imaging characteristics were used to construct the clinical model. The radiomics score was calculated based on the radiomics features extracted from the portal venous CT images and the random forest (RF) algorithm to construct the radiomics model. The combined model was constructed using the radiomics score and significant clinical factors according to the multivariate logistic regression. The diagnostic efficacy of the models was evaluated using receiver operating characteristic (ROC) curve analysis and the area under the curve (AUC).ResultsThe RF score based on the eight validated features extracted from the portal venous CT images was used to build the radiomics model. Painless hematuria as an independent risk factor was used to build the clinical model. The combined model was constructed using the RF score and the selected clinical factor. Both the radiomics model and combined model showed higher efficacy in differentiating infiltrative RCC and pyelocaliceal UTUC in the training and testing cohorts with AUC values of 0.95 and 0.90, respectively, for the radiomics model and 0.99 and 0.90, respectively, for the combined model. The decision curves of the combined model as well as the radiomics model indicated an overall net benefit over the clinical model. Both the radiomics model and the combined model achieved a notable reduction in false-positive and false-negativerates, resulting in significantly higher accuracy compared to the visual assessments in both the training and testing cohorts.ConclusionThe radiomics model and combined model had the potential to accurately differentiate infiltrative RCC and pyelocaliceal UTUC, which invades the renal parenchyma, and provide a new potentially non-invasive method to guide surgery strategies
Associations of psychological wellbeing with COVID-19 hospitalization and mortality in adults aged 50 years or older from 25 European countries and Israel
BackgroundLower psychological wellbeing is associated with poor outcomes in a variety of diseases and healthy populations. However, no study has investigated whether psychological wellbeing is associated with the outcomes of COVID-19. This study aimed to determine whether individuals with lower psychological wellbeing are more at risk for poor outcomes of COVID-19.MethodsData were from the Survey of Health, Aging, and Retirement in Europe (SHARE) in 2017 and SHARE's two COVID-19 surveys in June–September 2020 and June–August 2021. Psychological wellbeing was measured using the CASP-12 scale in 2017. The associations of the CASP-12 score with COVID-19 hospitalization and mortality were assessed using logistic models adjusted for age, sex, body mass index, smoking, physical activity, household income, education level, and chronic conditions. Sensitivity analyses were performed by imputing missing data or excluding cases whose diagnosis of COVID-19 was solely based on symptoms. A confirmatory analysis was conducted using data from the English Longitudinal Study of Aging (ELSA). Data analysis took place in October 2022.ResultsIn total, 3,886 individuals of 50 years of age or older with COVID-19 were included from 25 European countries and Israel, with 580 hospitalized (14.9%) and 100 deaths (2.6%). Compared with individuals in tertile 3 (highest) of the CASP-12 score, the adjusted odds ratios (ORs) of COVID-19 hospitalization were 1.81 (95% CI, 1.41–2.31) for those in tertile 1 (lowest) and 1.37 (95% CI, 1.07–1.75) for those in tertile 2. As for COVID-19 mortality, the adjusted ORs were 2.05 (95% CI, 1.12–3.77) for tertile 1 and 1.78 (95% CI, 0.98–3.23) for tertile 2, compared with tertile 3. The results were relatively robust to missing data or the exclusion of cases solely based on symptoms. This inverse association of the CASP-12 score with COVID-19 hospitalization risk was also observed in ELSA.ConclusionThis study shows that lower psychological wellbeing is independently associated with increased risks of COVID-19 hospitalization and mortality in European adults aged 50 years or older. Further study is needed to validate these associations in recent and future waves of the COVID-19 pandemic and other populations
Immune cell early activation, apoptotic kinetic, and T-cell functional impairment in domestic pigs after ASFV CADC_HN09 strain infection
African swine fever (ASF) caused by the African swine fever virus (ASFV) is a fatal and highly contagious disease of domestic pigs characterized by rapid disease progression and death within 2 weeks. How the immune cells respond to acute ASFV infection and contribute to the immunopathogenesis of ASFV has not been completely understood. In this study, we examined the activation, apoptosis, and functional changes of distinct immune cells in domestic pigs following acute infection with the ASFV CADC_HN09 strain using multicolor flow cytometry. We found that ASFV infection induced broad apoptosis of DCs, monocytes, neutrophils, and lymphocytes in the peripheral blood of pigs over time. The expression of MHC class II molecule (SLA-DR/DQ) on monocytes and conventional DCs as well as CD21 expression on B cells were downregulated after ASFV infection, implying a potential impairment of antigen presentation and humoral response. Further examination of CD69 and ex vivo expression of IFN-γ on immune cells showed that T cells were transiently activated and expressed IFN-γ as early as 5 days post-infection. However, the capability of T cells to produce cytokines was significantly impaired in the infected pigs when stimulated with mitogen. These results suggest that the adaptive cellular immunity to ASFV might be initiated but later overridden by ASFV-induced immunosuppression. Our study clarified the cell types that were affected by ASFV infection and contributed to lymphopenia, improving our understanding of the immunopathogenesis of ASFV
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Surface engineering for cellulose as a boosted Layer-by-Layer assembly: Excellent flame retardancy and improved durability with introduction of bio-based “molecular glue”.
Layer-by-Layer (LbL) assembly was attractive as a versatile tool to address the flammability of cotton, while the washing fastness of LbL coating stayed an issue. Aiming to tackle this issue, LbL layers consisted of phenylphosphonic acid (PHA) and 3-aminopropyltriethoxysilane (APTES) was deposited on polydopamine (PDA)-coated cotton. The prepared cotton reached 31.4% of limiting oxygen index (LOI), and extinguished immediately after removing the ignitor. Peak of heat release rate (pHRR) attenuated around 36 % compared with pure cotton. A combined barrier and quenching mechanisms were proposed. Moreover, enhanced washing durability (24.1% of LOI) was achieved even after 50 detergent laundering cycles. A facile, boosted LbL approach with proposed π − π stacking interactions between PDA abundant aromatic structures and benzene ring in PHA from LbL layers, is first to put forward to construct durable efficient flame retardant (FR) cotton. This work attempted to enlighten more thoughts and design for durable FR cotton fabrics.pre-print2453 K
Rapid and massive throughput analysis of a constant volume high-pressure gas injection system
Fusion power shutdown system (FPSS) is a safety system to stop plasma in case of accidents or incidents. The gas injection system for the FPSS presented in this work is designed to research the flow development in a closed system. As the efficiency of the system is a crucial property, plenty of experiments are executed to get optimum parameters. In this system, the flow is driven by the pressure difference between a gas storage tank and a vacuum vessel with a source pressure. The idea is based on a constant volume system without extra source gases to guarantee rapid response and high throughput. Among them, valves and gas species are studied because their properties could influence the velocity of the fluid field. Then source pressures and volumes are emphasized to investigate the volume flow rate of the injection. The source pressure has a considerable effect on the injected volume. From the data, proper parameters are extracted to achieve the best performance of the FPSS. Finally, experimental results are used as a quantitative benchmark for simulations which can add our understanding of the inner gas flow in the pipeline. In generally, there is a good consistency and the obtained correlations will be applied in further study and design for the FPSS. Keywords: FPSS, Gas injection, Transient experiment, Flow development, Prescribed tim
- …