12 research outputs found

    Horseradish Peroxidase Modification of Sulfomethylated Wheat Straw Alkali Lignin To Improve Its Dispersion Performance

    No full text
    Wheat straw alkali lignin (WAL), byproducts from the alkali pulping process, is a low-value product with poor water solubility and limited dispersion performance. Sulfomethylated wheat straw alkali lignin (SWAL) was first prepared by sulfomethylation. In order to further improve the dispersion performance of WAL, a commercially available horseradish peroxidase (HRP) was then used to modify SWAL. Gel permeation chromatography showed an obvious increase in molecular weight after HRP modification by approximately 6 fold and 18 fold, compared with SWAL and WAL, respectively. The structural characterization was investigated by functional group content measurements and IR and <sup>1</sup>H NMR analyses. After the HRP modification, the phenolic and methoxyl group content decreased, while the sulfonic and carboxyl group content increased. Because of the higher molecular weight and hydrophilic group content, the HRP modification induced a significant improvement in adsorption and dispersion performance of WAL

    An 8.68% Efficiency Chemically-Doped-Free Graphene–Silicon Solar Cell Using Silver Nanowires Network Buried Contacts

    No full text
    Graphene–silicon (Gr-Si) heterojunction solar cells have been recognized as one of the most low-cost candidates in photovoltaics due to its simple fabrication process. However, the high sheet resistance of chemical vapor deposited (CVD) Gr films is still the most important limiting factor for the improvement of the power conversion efficiency of Gr-Si solar cells, especially in the case of large device-active area. In this work, we have fabricated a novel transparent conductive film by hybriding a monolayer Gr film with silver nanowires (AgNWs) network soldered by the graphene oxide (GO) flakes. This Gr-AgNWs hybrid film exhibits low sheet resistance and larger direct-current to optical conductivity ratio, quite suitable for solar cell fabrication. An efficiency of 8.68% has been achieved for the Gr-AgNWs-Si solar cell, in which the AgNWs network acts as buried contacts. Meanwhile, the Gr-AgNWs-Si solar cells have much better stability than the chemically doped Gr-Si solar cells. These results show a new route for the fabrication of high efficient and stable Gr-Si solar cells

    Table_2_Drought resistance index screening and evaluation of lettuce under water deficit conditions on the basis of morphological and physiological differences.docx

    No full text
    IntroductionWater is one of the important factors affecting the yield of leafy vegetables. Lettuce, as a widely planted vegetable, requires frequent irrigation due to its shallow taproot and high leaf evaporation rate. Therefore, screening drought-resistant genotypes is of great significance for lettuce production.MethodsIn the present study, significant variations were observed among 13 morphological and physiological traits of 42 lettuce genotypes under normal irrigation and water-deficient conditions.ResultsFrequency analysis showed that soluble protein (SP) was evenly distributed across six intervals. Principal component analysis (PCA) was conducted to transform the 13 indexes into four independent comprehensive indicators with a cumulative contribution ratio of 94.83%. The stepwise regression analysis showed that root surface area (RSA), root volume (RV), belowground dry weight (BDW), soluble sugar (SS), SP, and leaf relative water content (RWC) could be used to evaluate and predict the drought resistance of lettuce genotypes. Furthermore, the drought resistance ranks of the genotypes were similar according to the drought resistance comprehensive evaluation value (D value), comprehensive drought resistance coefficient (CDC), and weight drought resistance coefficient (WDC). The cluster analysis enabled the division of the 42 genotypes into five drought resistance groups; among them, variety Yidali151 was divided into group I as a strongly drought-resistant variety, group II included 6 drought-resistant genotypes, group III included 16 moderately drought-resistant genotypes, group IV included 12 drought-sensitive genotypes, and group V included 7 highly drought-sensitive genotypes. Moreover, a representative lettuce variety was selected from each of the five groups to verify its water resistance ability under water deficit conditions. In the drought-resistant variety, it was observed that stomatal density, superoxide anion (O2.−wfi2) production rate, and malondialdehyde (MDA) content exhibited a low increase rate, while catalase (CAT), superoxide dismutase (SOD), and that peroxidase (POD) activity exhibited a higher increase than in the drought-sensitive variety.DiscussionIn summary, the identified genotypes are important because their drought-resistant traits can be used in future drought-resistant lettuce breeding programs and water-efficient cultivation.</p

    Table_4_Drought resistance index screening and evaluation of lettuce under water deficit conditions on the basis of morphological and physiological differences.docx

    No full text
    IntroductionWater is one of the important factors affecting the yield of leafy vegetables. Lettuce, as a widely planted vegetable, requires frequent irrigation due to its shallow taproot and high leaf evaporation rate. Therefore, screening drought-resistant genotypes is of great significance for lettuce production.MethodsIn the present study, significant variations were observed among 13 morphological and physiological traits of 42 lettuce genotypes under normal irrigation and water-deficient conditions.ResultsFrequency analysis showed that soluble protein (SP) was evenly distributed across six intervals. Principal component analysis (PCA) was conducted to transform the 13 indexes into four independent comprehensive indicators with a cumulative contribution ratio of 94.83%. The stepwise regression analysis showed that root surface area (RSA), root volume (RV), belowground dry weight (BDW), soluble sugar (SS), SP, and leaf relative water content (RWC) could be used to evaluate and predict the drought resistance of lettuce genotypes. Furthermore, the drought resistance ranks of the genotypes were similar according to the drought resistance comprehensive evaluation value (D value), comprehensive drought resistance coefficient (CDC), and weight drought resistance coefficient (WDC). The cluster analysis enabled the division of the 42 genotypes into five drought resistance groups; among them, variety Yidali151 was divided into group I as a strongly drought-resistant variety, group II included 6 drought-resistant genotypes, group III included 16 moderately drought-resistant genotypes, group IV included 12 drought-sensitive genotypes, and group V included 7 highly drought-sensitive genotypes. Moreover, a representative lettuce variety was selected from each of the five groups to verify its water resistance ability under water deficit conditions. In the drought-resistant variety, it was observed that stomatal density, superoxide anion (O2.−wfi2) production rate, and malondialdehyde (MDA) content exhibited a low increase rate, while catalase (CAT), superoxide dismutase (SOD), and that peroxidase (POD) activity exhibited a higher increase than in the drought-sensitive variety.DiscussionIn summary, the identified genotypes are important because their drought-resistant traits can be used in future drought-resistant lettuce breeding programs and water-efficient cultivation.</p

    Table_1_Drought resistance index screening and evaluation of lettuce under water deficit conditions on the basis of morphological and physiological differences.docx

    No full text
    IntroductionWater is one of the important factors affecting the yield of leafy vegetables. Lettuce, as a widely planted vegetable, requires frequent irrigation due to its shallow taproot and high leaf evaporation rate. Therefore, screening drought-resistant genotypes is of great significance for lettuce production.MethodsIn the present study, significant variations were observed among 13 morphological and physiological traits of 42 lettuce genotypes under normal irrigation and water-deficient conditions.ResultsFrequency analysis showed that soluble protein (SP) was evenly distributed across six intervals. Principal component analysis (PCA) was conducted to transform the 13 indexes into four independent comprehensive indicators with a cumulative contribution ratio of 94.83%. The stepwise regression analysis showed that root surface area (RSA), root volume (RV), belowground dry weight (BDW), soluble sugar (SS), SP, and leaf relative water content (RWC) could be used to evaluate and predict the drought resistance of lettuce genotypes. Furthermore, the drought resistance ranks of the genotypes were similar according to the drought resistance comprehensive evaluation value (D value), comprehensive drought resistance coefficient (CDC), and weight drought resistance coefficient (WDC). The cluster analysis enabled the division of the 42 genotypes into five drought resistance groups; among them, variety Yidali151 was divided into group I as a strongly drought-resistant variety, group II included 6 drought-resistant genotypes, group III included 16 moderately drought-resistant genotypes, group IV included 12 drought-sensitive genotypes, and group V included 7 highly drought-sensitive genotypes. Moreover, a representative lettuce variety was selected from each of the five groups to verify its water resistance ability under water deficit conditions. In the drought-resistant variety, it was observed that stomatal density, superoxide anion (O2.−wfi2) production rate, and malondialdehyde (MDA) content exhibited a low increase rate, while catalase (CAT), superoxide dismutase (SOD), and that peroxidase (POD) activity exhibited a higher increase than in the drought-sensitive variety.DiscussionIn summary, the identified genotypes are important because their drought-resistant traits can be used in future drought-resistant lettuce breeding programs and water-efficient cultivation.</p

    Table_3_Drought resistance index screening and evaluation of lettuce under water deficit conditions on the basis of morphological and physiological differences.docx

    No full text
    IntroductionWater is one of the important factors affecting the yield of leafy vegetables. Lettuce, as a widely planted vegetable, requires frequent irrigation due to its shallow taproot and high leaf evaporation rate. Therefore, screening drought-resistant genotypes is of great significance for lettuce production.MethodsIn the present study, significant variations were observed among 13 morphological and physiological traits of 42 lettuce genotypes under normal irrigation and water-deficient conditions.ResultsFrequency analysis showed that soluble protein (SP) was evenly distributed across six intervals. Principal component analysis (PCA) was conducted to transform the 13 indexes into four independent comprehensive indicators with a cumulative contribution ratio of 94.83%. The stepwise regression analysis showed that root surface area (RSA), root volume (RV), belowground dry weight (BDW), soluble sugar (SS), SP, and leaf relative water content (RWC) could be used to evaluate and predict the drought resistance of lettuce genotypes. Furthermore, the drought resistance ranks of the genotypes were similar according to the drought resistance comprehensive evaluation value (D value), comprehensive drought resistance coefficient (CDC), and weight drought resistance coefficient (WDC). The cluster analysis enabled the division of the 42 genotypes into five drought resistance groups; among them, variety Yidali151 was divided into group I as a strongly drought-resistant variety, group II included 6 drought-resistant genotypes, group III included 16 moderately drought-resistant genotypes, group IV included 12 drought-sensitive genotypes, and group V included 7 highly drought-sensitive genotypes. Moreover, a representative lettuce variety was selected from each of the five groups to verify its water resistance ability under water deficit conditions. In the drought-resistant variety, it was observed that stomatal density, superoxide anion (O2.−wfi2) production rate, and malondialdehyde (MDA) content exhibited a low increase rate, while catalase (CAT), superoxide dismutase (SOD), and that peroxidase (POD) activity exhibited a higher increase than in the drought-sensitive variety.DiscussionIn summary, the identified genotypes are important because their drought-resistant traits can be used in future drought-resistant lettuce breeding programs and water-efficient cultivation.</p

    Bioconversion of Beetle-Killed Lodgepole Pine Using SPORL: Process Scale-up Design, Lignin Coproduct, and High Solids Fermentation without Detoxification

    No full text
    Mountain pine beetle killed Lodgepole pine (<i>Pinus contorta</i> Douglas ex Loudon) wood chips were pretreated using an acidic sulfite solution of approximately pH = 2.0 at a liquor to wood ratio of 3 and sodium bisulfite loading of 8 wt % on wood. The combined hydrolysis factor (CHF), formulated from reaction kinetics, was used to design a scale-up pretreatment on 2000 g wood chips at a relatively low temperature of 165 °C that reduced furan formation and facilitated high solids saccharification and fermentation. The pretreated solids and liquor were disk milled together to result in a biomass whole slurry of 25% total solids. The whole biomass slurry was directly used to conduct simultaneous enzymatic saccharification and combined fermentation (SSCombF) using a commercial cellulase and <i>Saccharomyces cerevisiae</i> YRH400 without detoxification. A terminal ethanol titer of 47.1 g L<sup>–1</sup> with a yield of 306 L (tonne wood)<sup>−1</sup>, or 72.0% theoretical, was achieved when SSCombF was conducted at an unwashed solids loading of 18%. The lignosulfonate (LS) from SPORL was highly sulfonated and showed better dispersibility than a high purity commercial softwood LS, and therefore has potential as a directly marketable coproduct

    Statistical significance of explanatory variables in the best-fitting models for the data set with OD ratios and without OD ratios.

    No full text
    <p>The best-fitting models were determined by comparing AIC values among models that considered all possible combinations of explanatory variables. Statistical significance was determined using an ANOVA model with type III sums-of-squares (SS). Variables with <i>P<</i>0.05 are shown in bold. Partial r<sup>2</sup> values (coefficient of determination) were determined by dividing SS values of each factor by total SS.</p>1<p>Numerator (first number) and denominator (second number) degrees of freedom (df) for F-test.</p>2<p>RNA integrity number (RIN).</p>3<p>Mass of total RNA sequenced.</p><p>Other abbreviations as per <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0050226#pone-0050226-t001" target="_blank">Table 1</a>.</p

    Factors that significantly predicted the number of large scaffolds.

    No full text
    <p>Among our measures of RNA quality, (A) RNA integrity number (RIN) and (B) OD 260/230 ratio were the strongest predictors of the number of scaffolds ≥1000 bp. (C) Sequencing platform also had a strong effect on number of large scaffolds (<i>P</i><0.001, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0050226#pone-0050226-t002" target="_blank">Table 2</a>; numbers at the base of bars show sample size), and (D) mass of RNA sequenced had a weak but detectable effect (see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0050226#pone-0050226-t002" target="_blank">Table 2</a>). Note, for most samples we used 20, 30 or 40 µg of total RNA for sequencing, but a few samples used intermediate or lower amounts.</p
    corecore