176 research outputs found

    4-[(E)-({4-[Bis­(2-hy­droxy­eth­yl)amino]­phen­yl}imino)­meth­yl]phenol

    Get PDF
    In the title compound, C17H20N2O3, the amino N atom is in a planar environment (sum of angles = 360.0°). All hy­droxy H atoms are involved in hydrogen bonding. In the crystal structure, two O—H⋯O and an O—H⋯Nimino hydrogen bond result in the formation of a three-dimensional network. The latter hydrogen bonding causes distortion of the planarity of the 4-HO–C6H4–CH=N–C6H4– fragment by rotation around the =N—CPh bond. The crystal studied was a non-merohedral twin [refined BASF parameter for the major component = 0.5293 (7)]

    Glass transition in mixed network former glasses:Insights from calorimetric measurements

    Get PDF

    2,2′-(4-{[(E)-4-Meth­oxy­benzyl­idene]amino}­phenyl­imino)­diethanol

    Get PDF
    In the title compound, C18H22N2O3, the dihedral angle between the aromatic rings is 3.9 (2)°. Both H atoms of the hy­droxy groups are involved in inter­molecular O—H⋯O hydrogen bonding. In the crystal structure, this hydrogen bonding assembles mol­ecules into chains of 21 symmetry extending parallel to the b axis. The almost planar (within 0.09 and 0.06 Å) 4-CH3O–C6H4–CH=N–C6H4– groups are oriented outwards the twofold screw axis

    Enhanced Stem Cell Osteogenic Differentiation by Bioactive Glass Functionalized Graphene Oxide Substrates

    Get PDF
    An unmet need in engineered bone regeneration is to develop scaffolds capable of manipulating stem cells osteogenesis. Graphene oxide (GO) has been widely used as a biomaterial for various biomedical applications. However, it remains challenging to functionalize GO as ideal platform for specifically directing stem cell osteogenesis. Herein, we report facile functionalization of GO with dopamine and subsequent bioactive glass (BG) to enhance stem cell adhesion, spreading, and osteogenic differentiation. On the basis of graphene, we obtained dopamine functionalized graphene oxide/bioactive glass (DGO/BG) hybrid scaffolds containing different content of DGO by loading BG nanoparticles on graphene oxide surface using sol-gel method. To enhance the dispersion stability and facilitate subsequent nucleation of BG in GO, firstly, dopamine (DA) was used to modify GO. Then, the modified GO was functionalized with bioactive glass (BG) using sol-gel method. The adhesion, spreading, and osteoinductive effects of DGO/BG scaffold on rat bone marrow mesenchymal stem cells (rBMSCs) were evaluated. DGO/BG hybrid scaffolds with different content of DGO could influence rBMSCs’ behavior. The highest expression level of osteogenic markers suggests that the DGO/BG hybrid scaffolds have great potential or elicit desired bone reparative outcome

    NaoXinTong Inhibits the Development of Diabetic Retinopathy in d

    Get PDF
    Buchang NaoXinTong capsule (NXT) is a Chinese Materia Medica standardized product extracted from 16 Chinese traditional medical herbs and widely used for treatment of patients with cerebrovascular and cardiovascular diseases in China. Formation of microaneurysms plays an important role in the development of diabetic retinopathy. In this study, we investigated if  NXT can protect diabetic mice against the development of diabetic retinopathy. The db/db mice (~6 weeks old), a diabetic animal model, were divided into two groups and fed normal chow or plus NXT for 14 weeks. During the treatment, fasting blood glucose levels were monthly determined. After treatment, retinas were collected to determine retinal thickness, accumulation of carbohydrate macromolecules, and caspase-3 (CAS-3) expression. Our results demonstrate that administration of NXT decreased fasting blood glucose levels. Associated with the decreased glucose levels, NXT blocked the diabetes-induced shrink of multiple layers, such as photoreceptor layer and outer nuclear/plexiform layers, in the retina. NXT also inhibited the diabetes-induced expression of CAS-3 protein and mRNA, MMP-2/9 and TNFα mRNA, accumulation of carbohydrate macromolecules, and formation of acellular capillaries in the retina. Taken together, our study shows that NXT can inhibit the development of diabetic retinopathy and suggests a new potential application of NXT in clinic

    Efficacy and safety of polymyxin E sulfate in the treatment of critically ill patients with carbapenem-resistant organism infections

    Get PDF
    ObjectivePolymyxins are currently the last line of defense in the treatment of carbapenem-resistant organisms (CRO). As a kind of polymyxin available for clinical use in China, we aim to explore the efficacy and safety of colistin sulfate (Polymyxin E sulfate, PES) in this study.MethodsThis real-world retrospective study included 119 patients diagnosed with CRO infection and treated with PES for more than 72 h, from May 2020 to July 2022 at West China Hospital. The primary outcome was clinical efficacy at the end of treatment, and secondary outcomes included microbial response, in-hospital mortality and incidence of nephrotoxicity.ResultsThe effective clinical and microbiological responses were 53.8% and 49.1%, respectively. And the in-hospital mortality was 27.7%. Only 9.2% of patients occurred with PES-related nephrotoxicity. Multivariate analysis revealed that duration of PES was an independent predictor of effective therapy, while age-adjusted Charlson comorbidity index (aCCI) and post-treatment PCT(p-PCT) were independent risk factors for poor outcome.ConclusionsPES can be a salvage treatment for CRO-induced infections with favorable efficacy and low nephrotoxicity. The treatment duration of PES, aCCI and p-PCT were factors related to the clinical effectiveness of PES

    Research on Surface Defect Detection Method of Photovoltaic Power Generation Panels——Comparative Analysis of Detecting Model Accuracy

    Get PDF
    INTRODUCTION: Research on intelligent defect detection technology using machine vision was conducted to address the challenging problem of detecting and localizing PV defects in photovoltaic power generation system operation and maintenance. OBJECTIVES: The aim is to improve the accuracy of PV defect detection and enhance the operation and maintenance efficiency of PV power plants. METHODS: In this paper, three detection methods such as image processing based detection, traditional machine learning based detection, and deep learning algorithm based detection are discussed and compared, and analyzed respectively. It is finally concluded that the deep learning based detection is more efficient in comparison. Then further analysis and simulation experiments are done through several detection algorithms based on deep learning. RESULTS: The experiment yields a high accuracy of the detection model based on the Faster-RCNN algorithm. Its mAP value reaches 92.6%. The detection model based on the YOLOv5 algorithm reaches a mAP value of 91.4%. But its speed is as much as 7 times faster than the model based on the Faster-RCNN algorithm. CONCLUSION: Comprehensive speed and accuracy index. Combining the needs of PV defect detection in the operation and maintenance of PV power generation systems with the results of simulation experiments. It is concluded that the detection model based on the YOLOv5 algorithm can provide better detection capability. Modeling with this algorithm is more suitable for PV defect detection

    Attenuating Immune Response of Macrophage by Enhancing Hydrophilicity of Ti Surface

    Get PDF
    Immune responses can determine the in vivo fate of implanted materials. The strategy for developing implants has shifted towards using materials with immunomodulatory activity. However, the immunoregulatory effect of hydrophilicity of titanium surface on the macrophage behavior and its underlying mechanism remain poorly understood. Here, the Ti surface hydrophilicity-dependent behavior of murine RAW264.7 macrophages was investigated in vitro. Two laboratory models with significantly different surface hydrophilicity and similar roughness were established with Ti-polished and Ti-H2O2 surfaces. The results of cell morphology observation showed that the Ti-H2O2 surface yielded enhanced cell adhesion and less multinucleated cell formation. CCK-8 assay indicated that the growth rate of macrophage on Ti-H2O2 surface is higher than that of Ti-polished. ELISA assay result revealed lower level of proinflammatory factor TNF-α and higher level of anti-inflammatory factor IL-10 on the Ti-H2O2 surface compared to Ti-polished. Subsequently, immunofluorescence and western blotting analysis showed that activation of the NF-κB-TNF-α pathway might be involved in the modulation of the immune response by surface hydrophilicity. Together, these results suggested that relative high hydrophilic Ti surface might attenuate the immune response of macrophage by activating NF-κB signaling. These findings could provide new insights into designing implant devices for orthopedic applications

    Research Progress on Deep Learning Based Defect Detection Technology for Solar Panels

    Get PDF
    INTRODUCTION: Based on machine vision technology to carry out photovoltaic panel defect detection technology research to solve the photovoltaic panel production line automation online defect detection and localization problems. OBJECTIVES: The goal is to improve the accuracy of defect detection on PV cell production lines, increase the speed of defect detection to meet real-time monitoring needs, and improve production efficiency. METHODS: In this paper, three detection methods such as image processing based detection, traditional machine learning based detection and deep learning algorithm based detection are discussed and compared and analyzed respectively. Finally, it is concluded that deep learning based detection methods are more effective in comparison. Then, further analysis and simulation experiments are done by several deep learning based detection algorithms. RESULTS: The experimental results show that the YOLOv8 algorithm has the highest precision rate and maintains good results in terms of recall and mAP values. The detection speed is all less than other algorithms, 10.6ms. CONCLUSION: The inspection model based on yolov8 algorithm has the highest comprehensive performance and is the most suitable algorithmic model for detecting defects in solar panels in production lines

    Synergistic adsorption of Cd(II) with sulfate/phosphate on ferrihydrite: An in situ ATR-FTIR/2D-COS study

    Get PDF
    Elucidation of the co-adsorption characteristics of heavy metal cations and oxyanions on (oxyhydr)oxides can help to better understand their distribution and transformation in many geological settings. In this work, batch adsorption experiments in combination with in situ attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) were applied to explore the interaction mechanisms of Cd(II) with sulfate or phosphate at the ferrihydrite (Fh)–water interface, and the two-dimensional correlation spectroscopic analysis (2D–COS) was used to enhance the resolution of ATR-FTIR bands and the accuracy of analysis. The batch adsorption experiments showed enhanced adsorption of both sulfate (S) and phosphate (P) on Fh when co-adsorbed with Cd(II); additionally, the desorbed percentages of Cd(II) were much lower in the P + Cd adsorption systems than those in the S + Cd adsorption systems. The spectroscopic results suggested that in the single adsorption systems, sulfate primarily adsorbed as outer-sphere complexes with a small amount of bidentate inner-sphere complexes, while the dominant adsorbed species of phosphate were largely the bidentate nonprotonated inner-sphere complexes, although there was significant pH-dependence. In the co-adsorption systems, the synergistic adsorption of Cd(II) and sulfate was dominantly attributed to the electrostatic interaction, as well as the formation of Fe–Cd–S (i.e., Cd-bridged) ternary complexes. In contrast, Fe–P–Cd (i.e., phosphate-bridged) ternary complexes were found in all of the co-adsorption systems of phosphate and Cd(II); furthermore, electrostatic interaction should also contribute to the co-adsorption process. Our results show that in situ ATR-FTIR in combination with 2D–COS can be an efficient tool in analyzing the co-adsorption mechanisms of anions and heavy metal cations on iron (oxyhydr)oxides in ternary adsorption systems. The co-existence of Cd(II) with sulfate or phosphate can be beneficial for their accumulations on Fh, and phosphate is more efficient than sulfate for the long-term immobilization of Cd(II)
    corecore