776 research outputs found

    (S)-2-(1H-Imidazol-1-yl)succinic acid

    Get PDF
    The title compound, C7H8N2O4, is a zwitterion, [formal name = (S)-3-carb­oxy-2-(imidazol-3-ium-1-yl)propano­ate], in which the deproton­ated negatively charged carboxyl­ate end shows almost identical C—O bond distances [1.248 (4) and 1.251 (4) Å] due to resonance. The mol­ecules are involved in inter­molecular O—H⋯O and N—H⋯O hydrogen bonds, which define a tightly bound three-dimensional structure

    Waiting Endurance Time Estimation of Electric Two-Wheelers at Signalized Intersections

    Get PDF
    The paper proposed a model for estimating waiting endurance times of electric two-wheelers at signalized intersections using survival analysis method. Waiting duration times were collected by video cameras and they were assigned as censored and uncensored data to distinguish between normal crossing and red-light running behavior. A Cox proportional hazard model was introduced, and variables revealing personal characteristics and traffic conditions were defined as covariates to describe the effects of internal and external factors. Empirical results show that riders do not want to wait too long to cross intersections. As signal waiting time increases, electric two-wheelers get impatient and violate the traffic signal. There are 12.8% of electric two-wheelers with negligible wait time. 25.0% of electric two-wheelers are generally nonrisk takers who can obey the traffic rules after waiting for 100 seconds. Half of electric two-wheelers cannot endure 49.0 seconds or longer at red-light phase. Red phase time, motor vehicle volume, and conformity behavior have important effects on riders’ waiting times. Waiting endurance times would decrease with the longer red-phase time, the lower traffic volume, or the bigger number of other riders who run against the red light. The proposed model may be applicable in the design, management and control of signalized intersections in other developing cities

    Geometric bionics: Lotus effect helps polystyrene nanotube films get good blood compatibility

    Get PDF
    Various biomaterials have been widely used for manufacturing biomedical applications including artificial organs, medical devices and disposable clinical apparatus, such as vascular prostheses, blood pumps, artificial kidney, artificial hearts, dialyzers and plasma separators, which could be used in contact with blood^1^. However, the research tasks of improving hemocompatibility of biomaterials have been carrying out with the development of biomedical requirements^2^. Since the interactions that lead to surface-induced thrombosis occurring at the blood-biomaterial interface become a reason of familiar current complications with grafts therapy, improvement of the blood compatibility of artificial polymer surfaces is, therefore a major issue in biomaterials science^3^. After decades of focused research, various approaches of modifying biomaterial surfaces through chemical or biochemical methods to improve their hemocompatibility were obtained^1^. In this article, we report that polystyrene nanotube films with morphology similar to the papilla on lotus leaf can be used as blood-contacted biomaterials by virtue of Lotus effect^4^. Clearly, this idea, resulting from geometric bionics that mimicking the structure design of lotus leaf, is very novel technique for preparation of hemocompatible biomaterials

    Ethyl 1-(6-chloro-3-pyridylmeth­yl)-5-ethoxy­methyl­eneamino-1H-1,2,3-triazole-4-carboxyl­ate

    Get PDF
    In the title compound, C14H16ClN5O3, there is evidence for significant electron delocalization in the triazolyl system. Intra­molecular C—H⋯O and inter­molecular C—H⋯O and C—H⋯N hydrogen bonds stabilize the structure
    corecore