446 research outputs found
Bright 22 m Excess Candidates from WISE All-Sky Catalog and Hipparcos Main Catalog
In this paper we present a catalog which includes 141 bright candidates
( mag, V band) showing the infrared (IR) excess at 22 m. Of
which, 38 stars are known IR excess stars or disk, 23 stars are double or
multiple stars and 4 are Be stars. While the remaining more than 70 stars are
identified as the 22 m excess candidates in our work. The criterion of
selecting candidates is . All these candidates are selected
from \emph{WISE} All-sky data cross-correlated with \emph{Hipparcos} Main
Catalog and the likelihood-ratio technique is employed. Considering the effect
of background, we introduce the \emph{IRAS} 100 m level to exclude the
high background. We also estimated the coincidence probability of these
sources. In addition, we presented the optical to mid-infrared SEDs and optical
images of all the candidates, and gave the observed optical spectra of 6 stars
with NAOC's 2.16-m telescope. To measure for the dust amount around each star,
the fractional luminosity is also provided. We also test whether our method of
selecting IR excess stars can be used to search for extra-solar planets, we
cross-matched our catalog with known IR-excess stars having planets but none is
matched. Finally, we give the fraction of stars showing IR-excess for different
spectral type of main-sequence stars.Comment: 45 pages, 16 figures, 4 tables. Accepted for publication in ApJ
Multiparty quantum secret sharing with pure entangled states and decoy photons
We present a scheme for multiparty quantum secret sharing of a private key
with pure entangled states and decoy photons. The boss, say Alice uses the
decoy photons, which are randomly in one of the four nonorthogonal
single-photon states, to prevent a potentially dishonest agent from
eavesdropping freely. This scheme requires the parties of communication to have
neither an ideal single-photon quantum source nor a maximally entangled one,
which makes this scheme more convenient than others in a practical application.
Moreover, it has the advantage of having high intrinsic efficiency for qubits
and exchanging less classical information in principle.Comment: 5 pages, no figure
Knockdown of CAVEOLIN-1 Sensitizes Human Basal-Like Triple-Negative Breast Cancer Cells to Radiation
Primary small cell carcinoma of the esophagus: clinicopathological and immunohistochemical features of 21 cases
BACKGROUND: Primary small cell carcinoma (SCC) of the esophagus is a rare and aggressive tumor with poor prognosis. In this study, we report the clinicopathological characteristics of 21 cases of small cell carcinoma of the esophagus treated at the Cancer Center of Sun Yat-Sen University, with particular focus on the histologic and immunohistochemical findings. METHODS: Twenty-one patient records were reviewed including presenting symptoms, demographics, disease stage, treatment, and follow-up. Histologic features were observed and immunohistochemical detection of cytokeratin (CK), epithelial membrane antigen (EMA), neuron specific enolase (NSE), synaptophysin (Syn), chromogranin A (CgA), neuronal cell adhesion molecules (CD56), thyroid transcriptional factor-1 (TTF-1) and S100 protein (S100) was performed. RESULTS: The median age of patients in the study was 56 years, with a male-to-female ratio of 3.2:1. Histologically, there were 19 "homogenous" SCC esophageal samples and 2 samples comprised of SCC and well-differentiated squamous cell carcinoma. The percentages of SCC samples with positive immunoreactivity were Syn 95.2%, CD56 76.2%, TTF-1 71.4%, NSE 61.9%, CgA 61.9%, CK 57.1%, EMA 61.9%, and S100 19.0%, respectively. The median patient survival time was 18.3 months after diagnosis. The 2-year survival rate was 28.6%. CONCLUSION: Our study suggests that esophageal SCC has similar histology to SCC that arises in the lung compartment, and Chinese patients have a poor prognosis. Higher proportion of positive labeling of Syn, CD56, CgA, NSE, and TTF-1 in esophageal SCC implicate that they are valuably applied in differential diagnosis of the malignancy
Identification and validation of hub genes in drug induced acute kidney injury basing on integrated transcriptomic analysis
BackgroundDrug-induced acute kidney damage (DI-AKI) is a clinical phenomenon of rapid loss of kidney function over a brief period of time as a consequence of the using of medicines. The lack of a specialized treatment and the instability of traditional kidney injury markers to detect DI-AKI frequently result in the development of chronic kidney disease. Thus, it is crucial to continue screening for DI-AKI hub genes and specific biomarkers.MethodsDifferentially expressed genes (DEGs) of group iohexol, cisplatin, and vancomycin’s were analyzed using Limma package, and the intersection was calculated. DEGs were then put into String database to create a network of protein-protein interactions (PPI). Ten algorithms are used in the Cytohubba plugin to find the common hub genes. Three DI-AKI models’ hub gene expression was verified in vivo and in vitro using PCR and western blot. To investigate the hub gene’s potential as a biomarker, protein levels of mouse serum and urine were measured by ELISA kits. The UUO, IRI and aristolochic acid I-induced nephrotoxicity (AAN) datasets in the GEO database were utilized for external data verification by WGCNA and Limma package. Finally, the Elisa kit was used to identify DI-AKI patient samples.Results95 up-regulated common DEGs and 32 down-regulated common DEGs were obtained using Limma package. A PPI network with 84 nodes and 24 edges was built with confidence >0.4. Four hub genes were obtained by Algorithms of Cytohubba plugin, including TLR4, AOC3, IRF4 and TNFAIP6. Then, we discovered that the protein and mRNA levels of four hub genes were significantly changed in the DI-AKI model in vivo and in vitro. External data validation revealed that only the AAN model, which also belonged to DI-AKI model, had significant difference in these hub genes, whereas IRI and UUO did not. Finally, we found that plasma TLR4 levels were higher in patients with DI-AKI, especially in vancomycin-induced AKI.ConclusionThe immune system and inflammation are key factors in DI-AKI. We discovered the immunological and inflammatory-related genes TLR4, AOC3, IRF4, and TNFAIP6, which may be promising specific biomarkers and essential hub genes for the prevention and identification of DI-AKI
Hemoglobin is associated with BMDs and risk of the 10-year probability of fractures in patients with type 2 diabetes mellitus
PurposeThis study aimed to investigate the associations between hemoglobin (HGB) levels and bone mineral density (BMD) and fracture risk in type 2 diabetes mellitus(T2DM) population of different ages. MethodThis cross-sectional study included 641 patients with T2DM (57.9% males). BMD of the femoral neck (FN), total hip (TH), and lumbar spine (LS) were measured using dual-energy X-ray absorptiometry. The 10-year probability of fracture was assessed using a fracture risk assessment tool (FRAX). HGB and other biochemical indices were measured in a certified laboratory at our hospital. Statistical analysis was performed using SPSS 26.0 and R language (R version 4.1.0). Generalized additive models (GAMs) were used to identify the associations between HGB and BMD and fracture risk.ResultsPatients with osteoporosis have lower HGB levels than the non-osteoporotic population and lower FN BMD in patients with anemia than in the non-anemic population. In patients with T2DM, there was sex- and age-related variability in the correlation between HGB levels and BMDs and fracture risk. In older men, HGB level was an independent determinant of BMD and was positively correlated with FN and TH BMD. In non-older women, HGB level was an independent determinant of BMD and fracture risk, positively associated with BMDs and negatively associated with 10-year probability of fracture risk. GAMs revealed a positive linear association between HGB level and BMDs in non-older female patients but not in older male patients.ConclusionOur study provides a new perspective on the association of HGB level and BMDs with fracture risk. Relatively high HGB levels are a protective factor for bone quality in patients with T2DM. However, the bone-protective effect of HGB is influenced by age and sex and persists only in older men and non-older women with T2DM
- …