10 research outputs found

    The Effect of Nano-SiO2 Dispersed Methods on Mechanical Properties of Cement Mortar

    Get PDF
    Nano-SiO2 is added to the cement by using different dispersion methods, through the macroscopic mechanical properties to characterize its dispersion in the cement, it can be used to explore the best experimental process. The results show that the compressive strength of cement samples with different dispersion methods is different. When the physical dispersion method is used, the intensity is not improved, but the ultrasonic dispersion method is the smallest, and the dispersion of nano-SiO2 is -9.11%. When the surfactant is used as dispersant, the dispersion of nano-SiO2 by Naphthalene water reducer is the best, and the compressive strength is increased by 6.68%. By using polymeric dispersing agent, polyethylene glycol has a certain effect on the dispersion of nano-SiO2, but it has some damage to the cement (set-retarder, etc.). Based on the above experiments, we have obtained the best dispersion method, which uses ultrasonic dispersion, and also needs to add naphthalene water reducer

    Adaptive Passive-Control for Multi-Stage Seismic Response of High-Rise Braced Frame Using the Frictional-Yielding Compounded BRBs

    No full text
    Buckling-restrained brace (BRB) is a dual-function device that improves the seismic resistance and energy-dissipation capacity of structures in earthquake engineering. To achieve the expected performance under severe ground motions, BRB is usually designed to remain elastic under mild earthquakes, leading to the increased seismic forces and insignificant vibration-reduction effect on the structures at this stage. This study extends the concept of adaptive passive-control of structures by proposing a novel frictional-yielding compounded BRB (FBRB). FBRB is fabricated by connecting the BRB steel casing and end plates with the friction dampers (FDs) in such a way that the BRB steel core and FDs undergo compatible deformation. In this way, FD dissipates seismic energy under mild earthquakes, while FD together with the BRB core dissipates energy under severe ground motions, resulting in an efficient self-adaptive vibration-reduction mechanism. The proposed FBRB construction was experimentally validated by carrying out the reversed-cyclic test, and the result indicated reliable connection with stable hysteretic behavior. Subsequently, the FBRB-equipped frame was proposed and studied which adopted FBRB as the energy-dissipative devices. A parametric design method was developed to determine the FBRB parameters with which the maximum elastic drift of the system could be reduced to the code-allowable value. The approach was implemented on a 48-story mega FBRB-equipped steel frame as the case study. The seismic behavior of the FBRB-equipped case structure was compared with that of the BRB-equipped system, and critically evaluated by carrying out the nonlinear time-history analyses. Results revealed that FBRB compensated for the conventional BRB in terms of inadequate energy dissipation under mild earthquakes and, meanwhile, was more efficient than the conventional BRB in reducing the lateral drifts under severe ground motions. The analysis indicated potential application prospect of FBRB in practical engineering

    Vibration-Reduction Strategy for High-Rise Braced Frame Using Viscoelastic-Yielding Compounded BRB

    No full text
    A buckling-restrained brace (BRB) serves as a typical load-bearing and energy-dissipative device for the passive control of structures under seismic loading. A BRB is generally designed to not yield under frequently occurring earthquake (FOE) and wind loads, resulting in it having less effectiveness in vibration reduction compared with post-yielding performance. To address this dilemma, this study proposed the concept and technique details of the viscoelastic-yielding compounded BRB (VBRB). Different from a conventional BRB, a VBRB is fabricated by attaching the viscoelastic damper (VED) to the surface of a BRB’s steel casing, ensuring a compatible deformation pattern between the VED and the BRB’s steel core. A dynamic loading test of VBRB specimens was carried out in which 0.2 Hz~0.6 Hz in loading rate and a maximum of 550 kN in load-bearing capacity had been applied, verifying the feasibility and performance of the VBRB. Subsequently, a parametric design procedure was developed to determine the required VBRB parameters so that the maximum elastic drift response of the structure could be reduced to the code-prescriptive value. The wind-resistance and seismic performances of the VBRB were critically evaluated through dynamic time-history analyses on a 48-story mega VBRB-equipped frame designed according to the Chinese seismic design code (GB50011-2010), and the effectiveness of the approach was also verified. Results indicate that the VBRB has advantages over a conventional BRB by providing a multi-stage passive energy dissipation capacity, resulting in a better vibration-control effect than conventional BRBs for structures subjected to wind load and seismic excitations

    Adaptive Passive-Control for Multi-Stage Seismic Response of High-Rise Braced Frame Using the Frictional-Yielding Compounded BRBs

    No full text
    Buckling-restrained brace (BRB) is a dual-function device that improves the seismic resistance and energy-dissipation capacity of structures in earthquake engineering. To achieve the expected performance under severe ground motions, BRB is usually designed to remain elastic under mild earthquakes, leading to the increased seismic forces and insignificant vibration-reduction effect on the structures at this stage. This study extends the concept of adaptive passive-control of structures by proposing a novel frictional-yielding compounded BRB (FBRB). FBRB is fabricated by connecting the BRB steel casing and end plates with the friction dampers (FDs) in such a way that the BRB steel core and FDs undergo compatible deformation. In this way, FD dissipates seismic energy under mild earthquakes, while FD together with the BRB core dissipates energy under severe ground motions, resulting in an efficient self-adaptive vibration-reduction mechanism. The proposed FBRB construction was experimentally validated by carrying out the reversed-cyclic test, and the result indicated reliable connection with stable hysteretic behavior. Subsequently, the FBRB-equipped frame was proposed and studied which adopted FBRB as the energy-dissipative devices. A parametric design method was developed to determine the FBRB parameters with which the maximum elastic drift of the system could be reduced to the code-allowable value. The approach was implemented on a 48-story mega FBRB-equipped steel frame as the case study. The seismic behavior of the FBRB-equipped case structure was compared with that of the BRB-equipped system, and critically evaluated by carrying out the nonlinear time-history analyses. Results revealed that FBRB compensated for the conventional BRB in terms of inadequate energy dissipation under mild earthquakes and, meanwhile, was more efficient than the conventional BRB in reducing the lateral drifts under severe ground motions. The analysis indicated potential application prospect of FBRB in practical engineering

    Vibration-Reduction Strategy for High-Rise Braced Frame Using Viscoelastic-Yielding Compounded BRB

    No full text
    A buckling-restrained brace (BRB) serves as a typical load-bearing and energy-dissipative device for the passive control of structures under seismic loading. A BRB is generally designed to not yield under frequently occurring earthquake (FOE) and wind loads, resulting in it having less effectiveness in vibration reduction compared with post-yielding performance. To address this dilemma, this study proposed the concept and technique details of the viscoelastic-yielding compounded BRB (VBRB). Different from a conventional BRB, a VBRB is fabricated by attaching the viscoelastic damper (VED) to the surface of a BRB’s steel casing, ensuring a compatible deformation pattern between the VED and the BRB’s steel core. A dynamic loading test of VBRB specimens was carried out in which 0.2 Hz~0.6 Hz in loading rate and a maximum of 550 kN in load-bearing capacity had been applied, verifying the feasibility and performance of the VBRB. Subsequently, a parametric design procedure was developed to determine the required VBRB parameters so that the maximum elastic drift response of the structure could be reduced to the code-prescriptive value. The wind-resistance and seismic performances of the VBRB were critically evaluated through dynamic time-history analyses on a 48-story mega VBRB-equipped frame designed according to the Chinese seismic design code (GB50011-2010), and the effectiveness of the approach was also verified. Results indicate that the VBRB has advantages over a conventional BRB by providing a multi-stage passive energy dissipation capacity, resulting in a better vibration-control effect than conventional BRBs for structures subjected to wind load and seismic excitations

    Tracing historical changes, degradation, and original sources of airborne polycyclic aromatic hydrocarbons (PAHs) in Jilin Province, China, by Abies holophylla and Pinus tabuliformis needle leaves

    No full text
    Due to their wide distribution and availability, plant leaves can be considered interesting candidates as biomonitoring substrates for the evaluation of atmospheric pollution. In addition, some species can also retain historical information, for example, related to environmental pollution, due to their leaf class age. In this study, the content of polycyclic aromatic hydrocarbons (PAHs) in Abies holophylla and Pinus tabuliformis needle samples in the function of their class age has been investigated to obtain information regarding the degradation constant for each PAH under investigation (α values ranging from 0.173 to 1.870) and to evaluate the possibility to correlate the presence of PAHs in needles with some important pollution environmental factors. Considering air pollutant variables registered in Jilin Province, interesting correlations (at 95% confidence level) have been found between coal consumption per year and anthracene contents in needles, while fluorene, phenanthrene, and anthracene results correlated with coal consumption. Furthermore, it has been demonstrated that the total PAH concentration in needles, for both species, increased with their age (from 804 to 3604 ng g-1 dry weight), showing a general tendency to accumulate these substances through years. PAH degradation rates increased instead with molecular complexity. This study could be considered a first trial to obtain historical environmental information by pine needles biomonitoring
    corecore