1,352 research outputs found

    Integrated Design and Implementation of Embedded Control Systems with Scilab

    Get PDF
    Embedded systems are playing an increasingly important role in control engineering. Despite their popularity, embedded systems are generally subject to resource constraints and it is therefore difficult to build complex control systems on embedded platforms. Traditionally, the design and implementation of control systems are often separated, which causes the development of embedded control systems to be highly time-consuming and costly. To address these problems, this paper presents a low-cost, reusable, reconfigurable platform that enables integrated design and implementation of embedded control systems. To minimize the cost, free and open source software packages such as Linux and Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers for interfacing Scilab with several communication protocols including serial, Ethernet, and Modbus are developed. Experiments are conducted to test the developed embedded platform. The use of Scilab enables implementation of complex control algorithms on embedded platforms. With the developed platform, it is possible to perform all phases of the development cycle of embedded control systems in a unified environment, thus facilitating the reduction of development time and cost.Comment: 15 pages, 14 figures; Open Access at http://www.mdpi.org/sensors/papers/s8095501.pd

    Minkowski Brane in Asymptotic dS5_5 Spacetime without Fine-tuning

    Full text link
    We discuss properties of a 3-brane in an asymptotic 5-dimensional de-Sitter spacetime. It is found that a Minkowski solution can be obtained without fine-tuning. In the model, the tiny observed positive cosmological constant is interpreted as a curvature of 5-dimensional manifold, but the Minkowski spacetime, where we live, is a natural 3-brane perpendicular to the fifth coordinate axis.Comment: 6 pages, Latex fil

    Spatial damping of propagating sausage waves in coronal cylinders

    Full text link
    Sausage modes are important in coronal seismology. Spatially damped propagating sausage waves were recently observed in the solar atmosphere. We examine how wave leakage influences the spatial damping of sausage waves propagating along coronal structures modeled by a cylindrical density enhancement embedded in a uniform magnetic field. Working in the framework of cold magnetohydrodynamics, we solve the dispersion relation (DR) governing sausage waves for complex-valued longitudinal wavenumber kk at given real angular frequencies ω\omega. For validation purposes, we also provide analytical approximations to the DR in the low-frequency limit and in the vicinity of ωc\omega_{\rm c}, the critical angular frequency separating trapped from leaky waves. In contrast to the standing case, propagating sausage waves are allowed for ω\omega much lower than ωc\omega_{\rm c}. However, while able to direct their energy upwards, these low-frequency waves are subject to substantial spatial attenuation. The spatial damping length shows little dependence on the density contrast between the cylinder and its surroundings, and depends only weakly on frequency. This spatial damping length is of the order of the cylinder radius for ω≲1.5vAi/a\omega \lesssim 1.5 v_{\rm Ai}/a, where aa and vAiv_{\rm Ai} are the cylinder radius and the Alfv\'en speed in the cylinder, respectively. We conclude that if a coronal cylinder is perturbed by symmetric boundary drivers (e.g., granular motions) with a broadband spectrum, wave leakage efficiently filters out the low-frequency components.Comment: 6 pages, 2 figures, to appear in Astronomy & Astrophysic
    • …
    corecore