1,352 research outputs found
Integrated Design and Implementation of Embedded Control Systems with Scilab
Embedded systems are playing an increasingly important role in control
engineering. Despite their popularity, embedded systems are generally subject
to resource constraints and it is therefore difficult to build complex control
systems on embedded platforms. Traditionally, the design and implementation of
control systems are often separated, which causes the development of embedded
control systems to be highly time-consuming and costly. To address these
problems, this paper presents a low-cost, reusable, reconfigurable platform
that enables integrated design and implementation of embedded control systems.
To minimize the cost, free and open source software packages such as Linux and
Scilab are used. Scilab is ported to the embedded ARM-Linux system. The drivers
for interfacing Scilab with several communication protocols including serial,
Ethernet, and Modbus are developed. Experiments are conducted to test the
developed embedded platform. The use of Scilab enables implementation of
complex control algorithms on embedded platforms. With the developed platform,
it is possible to perform all phases of the development cycle of embedded
control systems in a unified environment, thus facilitating the reduction of
development time and cost.Comment: 15 pages, 14 figures; Open Access at
http://www.mdpi.org/sensors/papers/s8095501.pd
Minkowski Brane in Asymptotic dS Spacetime without Fine-tuning
We discuss properties of a 3-brane in an asymptotic 5-dimensional de-Sitter
spacetime. It is found that a Minkowski solution can be obtained without
fine-tuning. In the model, the tiny observed positive cosmological constant is
interpreted as a curvature of 5-dimensional manifold, but the Minkowski
spacetime, where we live, is a natural 3-brane perpendicular to the fifth
coordinate axis.Comment: 6 pages, Latex fil
Spatial damping of propagating sausage waves in coronal cylinders
Sausage modes are important in coronal seismology. Spatially damped
propagating sausage waves were recently observed in the solar atmosphere. We
examine how wave leakage influences the spatial damping of sausage waves
propagating along coronal structures modeled by a cylindrical density
enhancement embedded in a uniform magnetic field. Working in the framework of
cold magnetohydrodynamics, we solve the dispersion relation (DR) governing
sausage waves for complex-valued longitudinal wavenumber at given real
angular frequencies . For validation purposes, we also provide
analytical approximations to the DR in the low-frequency limit and in the
vicinity of , the critical angular frequency separating trapped
from leaky waves. In contrast to the standing case, propagating sausage waves
are allowed for much lower than . However, while able
to direct their energy upwards, these low-frequency waves are subject to
substantial spatial attenuation. The spatial damping length shows little
dependence on the density contrast between the cylinder and its surroundings,
and depends only weakly on frequency. This spatial damping length is of the
order of the cylinder radius for , where
and are the cylinder radius and the Alfv\'en speed in the
cylinder, respectively. We conclude that if a coronal cylinder is perturbed by
symmetric boundary drivers (e.g., granular motions) with a broadband spectrum,
wave leakage efficiently filters out the low-frequency components.Comment: 6 pages, 2 figures, to appear in Astronomy & Astrophysic
- …