35 research outputs found
Vortex State in Na_xCoO_2.yH_2O: p_x\pm ip_y-wave versus d_{x^2-y^2}\pm id_{xy}-wave Pairing
Based on an effective Hamiltonian specified in the triangular lattice with
possible - or -wave pairing, which has
close relevance to the newly discovered NaCoOHO, the
electronic structure of the vortex state is studied by solving the
Bogoliubov-de Gennes equations. It is found that -wave is favored
for the electron doping as the hopping integral . The lowest-lying vortex
bound states are found to have respectively zero and positive energies for
- and -wave superconductors, whose vortex
structures exhibit the intriguing six-fold symmetry. In the presence of strong
on-site repulsion, the antiferromagnetic and ferromagnetic orders are induced
around the vortex cores for the former and the latter, respectively, both of
which cause the splitting of the LDOS peaks due to the lifting of spin
degeneracy. STM and NMR measurements are able to probe the new features of
vortex states uncovered in this work.Comment: 4 pages, 4 figures, The slightly shorter version was submitted to PR
Fractional matching preclusion for butterfly derived networks
The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost perfect matchings. As a generalization, Liu and Liu [18] recently introduced the concept of fractional matching preclusion number. The fractional matching preclusion number (FMP number) of G, denoted by fmp(G), is the minimum number of edges whose deletion leaves the resulting graph without a fractional perfect matching. The fractional strong matching preclusion number (FSMP number) of G, denoted by fsmp(G), is the minimum number of vertices and edges whose deletion leaves the resulting graph without a fractional perfect matching. In this paper, we study the fractional matching preclusion number and the fractional strong matching preclusion number for butterfly network, augmented butterfly network and enhanced butterfly network
Correlation between vitamin D levels and blood pressure in elderly hypertensive patients with osteoporosis
ObjectivesThe association between vitamin D and blood pressure in elderly patients with hypertension complicated by osteoporosis remains unclear. The objective of this study is to explore whether vitamin D deficiency contributes to elevated blood pressure in elderly individuals with both hypertension and osteoporosis.MethodsThis study represents a single-center retrospective observational investigation carried out at the Zhongshan Hospital Affiliated to Xiamen University. Ambulatory blood pressure, bone density, vitamin D levels, and additional laboratory parameters were collected upon admission. The association between vitamin D and ambulatory blood pressure outcomes was assessed using Spearman correlation tests and partial correlation analyses. The relationship between vitamin D and changes in blood pressure was analyzed through Generalized Additive Models, and threshold analysis was conducted to explore potential thresholds.Results139 patients with newly diagnosed osteoporosis were consecutively included (mean age 73 years, 84.9% female). There is a negative correlation between 25-(OH) D3 and 24 h mean systolic blood pressure (mSBP), diurnal mSBP, nocturnal mSBP, maximum SBP, respectively. The results of the generalized additive model analysis show that there is a nonlinear relationship between 25-(OH) D3 and 24 h mSBP, diurnal mSBP, nocturnal mSBP, respectively. After determining the critical point of 25-(OH) D3 as 42 nmol/L, a segmented linear regression model was used to calculate the effect size and 95% confidence interval on both sides of the critical point. When 25-(OH) D3 is ≤42 nmol/L, it significantly negatively correlates with 24 h, diurnal, and nocturnal mean SBP. Conversely, when 25-(OH) D3 exceeds 42 nmol/L, there is no statistically significant association with 24 h, diurnal, or nocturnal mSBP.ConclusionThere was a significant negative correlation between vitamin D levels and blood pressure levels in elderly patients with hypertension and osteoporosis
Anisotropic magnetic properties and tunable conductivity in two-dimensional layered NaCrX2 (X=Te,Se,S) single crystals
Monolayer NaCrX2 (X=Te,Se,S) were theoretically proposed to be
two-dimensional intrinsic ferromagnetic semiconductors while their physical
properties have not been thoroughly investigated in bulk single crystals. We
report the single-crystal growth, structural, magnetic and electronic transport
properties of NaCr(Te1-xSex)2 (0 6 x 6 1) and NaCrS2. For NaCr(Te1-xSex)2, the
strong perpendicular magnetic anisotropy of NaCrTe2 can be gradually tuned to
be a nearly isotropic one by Se-doping. Meanwhile, a systematic change in the
conductivity with increasing x is observed, displaying a doping-induced
metal-insulator-like transition. Under magnetic field larger than 30 koe, both
NaCrTe2 and NaCrSe2 can be polarized to a ferromagnetic state. While for
NaCrS2, robust antiferromagnetism is observed up to 70 kOe and two
field-induced metamagnetic transitions are identified along H||ab. These
intriguing properties together with the potential to be exfoliated down to
few-layer thickness make NaCrX2 (X=Te,Se,S) promising for exploring spintronic
applications
Two types of zero Hall phenomena in few-layer MnBiTe
The van der Waals antiferromagnetic topological insulator MnBiTe
represents a promising platform for exploring the layer-dependent magnetism and
topological states of matter. Despite the realization of several quantized
phenomena, such as the quantum anomalous Hall effect and the axion insulator
state, the recently observed discrepancies between magnetic and transport
properties have aroused controversies concerning the topological nature of
MnBiTe in the ground state. Here, we demonstrate the existence of two
distinct types of zero Hall phenomena in few-layer MnBiTe. In addition
to the robust zero Hall plateau associated with the axion insulator state, an
unexpected zero Hall phenomenon also occurs in some odd-number-septuple layer
devices. Importantly, a statistical survey of the optical contrast in more than
200 MnBiTe reveals that such accidental zero Hall phenomenon arises
from the reduction of effective thickness during fabrication process, a factor
that was rarely noticed in previous studies of 2D materials. Our finding not
only resolves the controversies on the relation between magnetism and anomalous
Hall effect in MnBiTe, but also highlights the critical issues
concerning the fabrication and characterization of devices based on 2D
materials.Comment: 21 pages, 4 figure
Ferromagnetic-antiferromagnetic coexisting ground states and exchange bias effects in and
Natural superlattice structures ( = 1,
2,...), in which magnetic layers are separated by nonmagnetic
layers, hold band topology, magnetism and reduced interlayer
coupling, providing a promising platform for the realization of exotic
topological quantum states. However, their magnetism in the two-dimensional
limit, which is crucial for further exploration of quantum phenomena, remains
elusive. Here, complex ferromagnetic (FM)-antiferromagnetic (AFM) coexisting
ground states that persist up to the 2-septuple layers (SLs) limit are observed
and comprehensively investigated in ( = 1) and
( = 2). The ubiquitous Mn-Bi site mixing modifies or
even changes the sign of the subtle inter-SL magnetic interactions, yielding a
spatially inhomogeneous interlayer coupling. Further, a tunable exchange bias
effect is observed in ( = 1, 2), arising
from the coupling between the FM and AFM components in the ground state. Our
work highlights a new approach toward the fine-tuning of magnetism and paves
the way for further study of quantum phenomena in
( = 1, 2,...) as well as their magnetic
applications.Comment: 9 pages, 4 figure
Studies of impurities and vortices in high temperaturesuperconductors
published_or_final_versionabstractPhysicsDoctoralDoctor of Philosoph
Investigation of the Deformation Failure Occurring When Extracting Minerals via Underground Mining: A Case Study
Metal mines mined using the sublevel caving method often exhibit various environmental problems on the ground surface. This can affect the safety of the production process in the mining area. A numerical model using Universal Distinct Element Code has been established to investigate deformation failure giving rise to this underground mining. The calculations are combined with in-situ monitoring data collected over a period of 10 years. The results indicate that the strata movement in the footwall can be divided into two stages: an arch caving development stage and post arch caving development stage. Mining disturbance is the main cause of caving in the arch caving development stage. The overlying strata experience ‘caving–stability–caving’, leading to the formation of an ‘arch-shaped’ caving pattern. In the post arch caving development stage, flexural-toppling deformation occurs in the strata in the direction of the collapse pit due to the tectonic stress present and high dip angles of the discontinuities. Through-going failure surface has been analyzed by studying the plastic state and displacement of elements. The formation of through-going failure surface is related to the flexural-toppling deformation and stress concentration caused by mining activities. Based on the different failure mechanisms, an efficient partition has been proposed such that the footwall can be divided into a stable zone, flexural-toppling failure zone, compression and slipping-toppling failure zone, and shear-slipping failure zone. The results are a useful reference when applied to the Chengchao Iron Mine and other similar metal mines