167 research outputs found
Immobilized probe and glass surface chemistry as variables in microarray fabrication
BACKGROUND: Global gene expression studies with microarrays can offer biological insights never before possible. However, the technology possesses many sources of technical variability that are an obstacle to obtaining high quality data sets. Since spotted microarrays offer design/content flexibility and potential cost savings over commercial systems, we have developed prehybridization quality control strategies for spotted cDNA and oligonucleotide arrays. These approaches utilize a third fluorescent dye (fluorescein) to monitor key fabrication variables, such as print/spot morphology, DNA retention, and background arising from probe redistributed during blocking. Here, our labeled cDNA array platform is used to study, 1) compression of array data using known input ratios of Arabidopsis in vitro transcripts and arrayed serial dilutions of homologous probes; 2) how curing time of in-house poly-L-lysine coated slides impacts probe retention capacity; and 3) the retention characteristics of 13 commercially available surfaces. RESULTS: When array element fluorescein intensity drops below 5,000 RFU/pixel, gene expression measurements become increasingly compressed, thereby validating this value as a prehybridization quality control threshold. We observe that the DNA retention capacity of in-house poly-L-lysine slides decreases rapidly over time (~50% reduction between 3 and 12 weeks post-coating; p < 0.0002) and that there are considerable differences in retention characteristics among commercially available poly-L-lysine and amino silane-coated slides. CONCLUSIONS: High DNA retention rates are necessary for accurate gene expression measurements. Therefore, an understanding of the characteristics and optimization of protocols to an array surface are prerequisites to fabrication of high quality arrays
Realistic Volume Rendering with Environment-Synced Illumination in Mixed Reality
Interactive volume visualization using a mixed reality (MR) system helps
provide users with an intuitive spatial perception of volumetric data. Due to
sophisticated requirements of user interaction and vision when using MR
head-mounted display (HMD) devices, the conflict between the realisticness and
efficiency of direct volume rendering (DVR) is yet to be resolved. In this
paper, a new MR visualization framework that supports interactive realistic DVR
is proposed. An efficient illumination estimation method is used to identify
the high dynamic range (HDR) environment illumination captured using a panorama
camera. To improve the visual quality of Monte Carlo-based DVR, a new
spatio-temporal denoising algorithm is designed. Based on a reprojection
strategy, it makes full use of temporal coherence between adjacent frames and
spatial coherence between the two screens of an HMD to optimize MR rendering
quality. Several MR development modules are also developed for related devices
to efficiently and stably display the DVR results in an MR HMD. Experimental
results demonstrate that our framework can better support immersive and
intuitive user perception during MR viewing than existing MR solutions.Comment: 6 pages, 6 figure
Preparation and application of single-atom nanozymes in oncology: a review
Single-atom nanozymes (SAzymes) represent a cutting-edge advancement in nanomaterials, merging the high catalytic efficiency of natural enzymes with the benefits of atomic economy. Traditionally, natural enzymes exhibit high specificity and efficiency, but their stability are limited by environmental conditions and production costs. Here we show that SAzymes, with their large specific surface area and high atomic utilization, achieve superior catalytic activity. However, their high dispersibility poses stability challenges. Our review focuses on recent structural and preparative advancements aimed at enhancing the catalytic specificity and stability of SAzymes. Compared to previous nanozymes, SAzymes demonstrate significantly improved performance in biomedical applications, particularly in tumor medicine. This progress positions SAzymes as a promising tool for future cancer treatment strategies, integrating the robustness of inorganic materials with the specificity of biological systems. The development and application of SAzymes could revolutionize the field of biocatalysis, offering a stable, cost-effective alternative to natural enzymes
Global analysis of phase locking in gene expression during cell cycle: the potential in network modeling
<p>Abstract</p> <p>Background</p> <p>In nonlinear dynamic systems, synchrony through oscillation and frequency modulation is a general control strategy to coordinate multiple modules in response to external signals. Conversely, the synchrony information can be utilized to infer interaction. Increasing evidence suggests that frequency modulation is also common in transcription regulation.</p> <p>Results</p> <p>In this study, we investigate the potential of phase locking analysis, a technique to study the synchrony patterns, in the transcription network modeling of time course gene expression data. Using the yeast cell cycle data, we show that significant phase locking exists between transcription factors and their targets, between gene pairs with prior evidence of physical or genetic interactions, and among cell cycle genes. When compared with simple correlation we found that the phase locking metric can identify gene pairs that interact with each other more efficiently. In addition, it can automatically address issues of arbitrary time lags or different dynamic time scales in different genes, without the need for alignment. Interestingly, many of the phase locked gene pairs exhibit higher order than 1:1 locking, and significant phase lags with respect to each other. Based on these findings we propose a new phase locking metric for network reconstruction using time course gene expression data. We show that it is efficient at identifying network modules of focused biological themes that are important to cell cycle regulation.</p> <p>Conclusions</p> <p>Our result demonstrates the potential of phase locking analysis in transcription network modeling. It also suggests the importance of understanding the dynamics underlying the gene expression patterns.</p
Utilization of a labeled tracking oligonucleotide for visualization and quality control of spotted 70-mer arrays
BACKGROUND: Spotted 70-mer oligonucleotide arrays offer potentially greater specificity and an alternative to expensive cDNA library maintenance and amplification. Since microarray fabrication is a considerable source of data variance, we previously directly tagged cDNA probes with a third fluorophore for prehybridization quality control. Fluorescently modifying oligonucleotide sets is cost prohibitive, therefore, a co-spotted Staphylococcus aureus-specific fluorescein-labeled "tracking" oligonucleotide is described to monitor fabrication variables of a Mycobacterium tuberculosis oligonucleotide microarray. RESULTS: Significantly (p < 0.01) improved DNA retention was achieved printing in 15% DMSO/1.5 M betaine compared to the vendor recommended buffers. Introduction of tracking oligonucleotide did not effect hybridization efficiency or introduce ratio measurement bias in hybridizations between M. tuberculosis H37Rv and M. tuberculosis mprA. Linearity between the mean log Cy3/Cy5 ratios of genes differentially expressed from arrays either possessing or lacking the tracking oligonucleotide was observed (R(2 )= 0.90, p < 0.05) and there were no significant differences in Pearson's correlation coefficients of ratio data between replicates possessing (0.72 ± 0.07), replicates lacking (0.74 ± 0.10), or replicates with and without (0.70 ± 0.04) the tracking oligonucleotide. ANOVA analysis confirmed the tracking oligonucleotide introduced no bias. Titrating target-specific oligonucleotide (40 μM to 0.78 μM) in the presence of 0.5 μM tracking oligonucleotide, revealed a fluorescein fluorescence inversely related to target-specific oligonucleotide molarity, making tracking oligonucleotide signal useful for quality control measurements and differentiating false negatives (synthesis failures and mechanical misses) from true negatives (no gene expression). CONCLUSIONS: This novel approach enables prehybridization array visualization for spotted oligonucleotide arrays and sets the stage for more sophisticated slide qualification and data filtering applications
Quantitative Measurement of Pathogen-Specific Human Memory T cell Repertoire Diversity Using a CDR3 beta-specific Microarray
BACKGROUND: Providing quantitative microarray data that is sensitive to very small differences in target sequence would be a useful tool in any number of venues where a sample can consist of a multiple related sequences present in various abundances. Examples of such applications would include measurement of pseudo species in viral infections and the measurement of species of antibodies or T cell receptors that constitute immune repertoires. Difficulties that must be overcome in such a method would be to account for cross-hybridization and for differences in hybridization efficiencies between the arrayed probes and their corresponding targets. We have used the memory T cell repertoire to an influenza-derived peptide as a test case for developing such a method.
RESULTS: The arrayed probes were corresponded to a 17 nucleotide TCR-specific region that distinguished sequences differing by as little as a single nucleotide. Hybridization efficiency between highly related Cy5-labeled subject sequences was normalized by including an equimolar mixture of Cy3-labeled synthetic targets representing all 108 arrayed probes. The same synthetic targets were used to measure the degree of cross hybridization between probes. Reconstitution studies found the system sensitive to input ratios as low as 0.5% and accurate in measuring known input percentages (R2 = 0.81, R = 0.90, p \u3c 0.0001). A data handling protocol was developed to incorporate the differences in hybridization efficiency. To validate the array in T cell repertoire analysis, it was used to analyze human recall responses to influenza in three human subjects and compared to traditional cloning and sequencing. When evaluating the rank order of clonotype abundance determined by each method, the approaches were not found significantly different (Wilcoxon rank-sum test, p \u3e 0.05).
CONCLUSION: This novel strategy appears to be robust and can be adapted to any situation where complex mixtures of highly similar sequences need to be quantitatively resolved
Comprehensive quality control utilizing the prehybridization third-dye image leads to accurate gene expression measurements by cDNA microarrays
BACKGROUND: Gene expression profiling using microarrays has become an important genetic tool. Spotted arrays prepared in academic labs have the advantage of low cost and high design and content flexibility, but are often limited by their susceptibility to quality control (QC) issues. Previously, we have reported a novel 3-color microarray technology that enabled array fabrication QC. In this report we further investigated its advantage in spot-level data QC. RESULTS: We found that inadequate amount of bound probes available for hybridization led to significant, gene-specific compression in ratio measurements, increased data variability, and printing pin dependent heterogeneities. The impact of such problems can be captured through the definition of quality scores, and efficiently controlled through quality-dependent filtering and normalization. We compared gene expression measurements derived using our data processing pipeline with the known input ratios of spiked in control clones, and with the measurements by quantitative real time RT-PCR. In each case, highly linear relationships (R(2)>0.94) were observed, with modest compression in the microarray measurements (correction factor<1.17). CONCLUSION: Our microarray analytical and technical advancements enabled a better dissection of the sources of data variability and hence a more efficient QC. With that highly accurate gene expression measurements can be achieved using the cDNA microarray technology
- …