1,276 research outputs found

    A Review of Vacuum Degradation Research and the Experimental Outgassing Research of the Core Material- Pu foam on Vacuum Insulation Panels

    Get PDF
    AbstractVacuum Insulation Panels(VIPs) have been regarded as a super thermal insulation material with a thermal resistance of about 5-8 times higher than that of equally thick conventional polyurethane boards. In this paper, the researches on factors influencing interior pressure in VIPs, including gas and water vapor permeation through the barrier and outgassing of the core materials, were reviewed respectively. Following this, aiming at the outgassing from open cell PU foam, the specific outgassing rate of the core material is tested not only at room temperature but also at low and high temperatures by an orifice known-conductance method

    Persistence of Various Alfalfa Populations in South Dakota Rangeland

    Get PDF
    Inclusion of alfalfa (Medicago sativa L.) in grasslands has long been valued to increase forage production and quality. Persistence of alfalfa in semiarid rangeland has generally been poor when non‐adapted and/or conventional hay‐type cultivars are utilized, however. Demand exists for alfalfa cultivars that establish readily and persist, particularly under grazing, in semiarid rangelands. A wild population of predominantly yellow‐flowered alfalfa (Medicago sativa subsp. falcata) was found growing and reproducing naturally in the Grand River National Grassland in northwestern South Dakota. This predominantly falcata alfalfa therefore demonstrates persistence in this semiarid environment. We initiated a study in May 2006 at the SDSU Antelope Livestock & Range Field Station near Buffalo, SD to evaluate persistence and vigor of eleven alfalfa populations transplanted into mixed‐grass prairie. Populations consisted of four predominantly falcata experimental populations (three are naturally selected and locally adapted; one is artificially selected), one pure falcata experimental population, one pure falcata cultivar, two pasture‐type cultivars, and three conventional hay‐type cultivars. Greenhouse grown seedlings were transplanted on 1 m‐centers within three exclosures (35 m X 35 m) divided into two sections; one exposed to grazing, the other protected from grazing. Grazing by cattle was initiated in August 2007. During the 2008 and 2009 growing seasons, intense grazing of alfalfa plants and associated vegetation occurred monthly for 1‐2 days. Survival, height, and canopy volume of grazed and protected alfalfa plants were measured before each grazing event. Despite a harsh winter with persistent ice cover, data from May 2009 revealed that falcata‐based populations had the highest survival under grazing (mean survival = 36%). Pasture‐type cultivars and conventional hay‐type cultivars experienced substantial mortality losses under grazing (mean survival = 8%). Low mortality and high vigor of all protected plant populations indicates that grazing weakened the grazed plants, greatly increasing the risk of winterkill and winter injury. These findings reveal that environmental adaptation, in addition to a degree of grazing tolerance, is necessary for persistence under grazing in this semiarid region. Populations that exhibit high persistence under both grazing and severe winter conditions offer great potential for being utilized in the northern Great Plains

    Bailout Embeddings, Targeting of KAM Orbits, and the Control of Hamiltonian Chaos

    Get PDF
    We present a novel technique, which we term bailout embedding, that can be used to target orbits having particular properties out of all orbits in a flow or map. We explicitly construct a bailout embedding for Hamiltonian systems so as to target KAM orbits. We show how the bailout dynamics is able to lock onto extremely small KAM islands in an ergodic sea.Comment: 3 figures, 9 subpanel

    Revisiting Generalized Chaplygin Gas as a Unified Dark Matter and Dark Energy Model

    Full text link
    In this paper, we revisit generalized Chaplygin gas (GCG) model as a unified dark matter and dark energy model. The energy density of GCG model is given as ρGCG/ρGCG0=[Bs+(1−Bs)a−3(1+α)]1/(1+α)\rho_{GCG}/\rho_{GCG0}=[B_{s}+(1-B_{s})a^{-3(1+\alpha)}]^{1/(1+\alpha)}, where α\alpha and BsB_s are two model parameters which will be constrained by type Ia supernova as standard candles, baryon acoustic oscillation as standard rulers and the seventh year full WMAP data points. In this paper, we will not separate GCG into dark matter and dark energy parts any more as adopted in the literatures. By using Markov Chain Monte Carlo method, we find the result: α=0.00126−0.00126−0.00126+0.000970+0.00268\alpha=0.00126_{- 0.00126- 0.00126}^{+ 0.000970+ 0.00268} and Bs=0.775−0.0161−0.0338+0.0161+0.0307B_s= 0.775_{- 0.0161- 0.0338}^{+ 0.0161+ 0.0307}.Comment: 6 pages, 4 figure

    Nuclear effects on J/{\psi} production in proton-nucleus collisions

    Full text link
    The study of nuclear effects for J/{\psi} production in proton-nucleus collisions is crucial for a correct interpretation of the J/{\psi} suppression patterns experimentally observed in heavy-ion collisions. By means of three representative sets of nuclear parton distribution, the energy loss effect in the initial state and the nuclear absorption effect in the final state are taken into account in the uniform framework of the Glauber model. A leading order phenomenological analysis is performed on J/{\psi} production cross-section ratios RW/Be(xF) for the E866 experimental data. The J/{\psi} suppression is investigated quantitatively due to the different nuclear effects. It is shown that the energy loss effect with resulting in the suppression on RW/Be(xF) is more important than the nuclear effects on parton distributions in high xF region. The E866 data in the small xF keep out the nuclear gluon distribution with a large anti-shadowing effect. However, the new HERA-B measurement is not in support of the anti-shadowing effect in the nuclear gluon distribution. It is found that the J/{\psi}-nucleon inelastic cross section {\sigma} J/{\psi} abs depends on the kinematical variable xF, and increases as xF in the region xF > 0.2. 1 Introductio

    Observational Constraints on Teleparallel Dark Energy

    Full text link
    We use data from Type Ia Supernovae (SNIa), Baryon Acoustic Oscillations (BAO), and Cosmic Microwave Background (CMB) observations to constrain the recently proposed teleparallel dark energy scenario based on the teleparallel equivalent of General Relativity, in which one adds a canonical scalar field, allowing also for a nonminimal coupling with gravity. Using the power-law, the exponential and the inverse hyperbolic cosine potential ansatzes, we show that the scenario is compatible with observations. In particular, the data favor a nonminimal coupling, and although the scalar field is canonical the model can describe both the quintessence and phantom regimes.Comment: 19 pages, 6 figures, version accepted by JCA

    Exploring morphological correlations among H2CO, 12CO, MSX and continuum mappings

    Full text link
    There are relatively few H2CO mappings of large-area giant molecular cloud (GMCs). H2CO absorption lines are good tracers for low-temperature molecular clouds towards star formation regions. Thus, the aim of the study was to identify H2CO distributions in ambient molecular clouds. We investigated morphologic relations among 6-cm continuum brightness temperature (CBT) data and H2CO (111-110; Nanshan 25-m radio telescope), 12CO (1--0; 1.2-m CfA telescope) and midcourse space experiment (MSX) data, and considered the impact of background components on foreground clouds. We report simultaneous 6-cm H2CO absorption lines and H110\alpha radio recombination line observations and give several large-area mappings at 4.8 GHz toward W49 (50'\times50'), W3 (70'\times90'), DR21/W75 (60'\times90') and NGC2024/NGC2023 (50'\times100') GMCs. By superimposing H2CO and 12CO contours onto the MSX color map, we can compare correlations. The resolution for H2CO, 12CO and MSX data was about 10', 8' and 18.3", respectively. Comparison of H2CO and 12CO contours, 8.28-\mu m MSX colorscale and CBT data revealed great morphological correlation in the large area, although there are some discrepancies between 12CO and H2CO peaks in small areas. The NGC2024/NGC2023 GMC is a large area of HII regions with a high CBT, but a H2CO cloud to the north is possible against the cosmic microwave background. A statistical diagram shows that 85.21% of H2CO absorption lines are distributed in the intensity range from -1.0 to 0 Jy and the \Delta V range from 1.206 to 5 km/s.Comment: 18 pages, 22 figures, 5 tables. Accepted to be published in Astrophysics and Space Scienc

    Inelastic lifetimes of confined two-component electron systems in semiconductor quantum wire and quantum well structures

    Full text link
    We calculate Coulomb scattering lifetimes of electrons in two-subband quantum wires and in double-layer quantum wells by obtaining the quasiparticle self-energy within the framework of the random-phase approximation for the dynamical dielectric function. We show that, in contrast to a single-subband quantum wire, the scattering rate in a two-subband quantum wire contains contributions from both particle-hole excitations and plasmon excitations. For double-layer quantum well structures, we examine individual contributions to the scattering rate from quasiparticle as well as acoustic and optical plasmon excitations at different electron densities and layer separations. We find that the acoustic plasmon contribution in the two-component electron system does not introduce any qualitatively new correction to the low energy inelastic lifetime, and, in particular, does not produce the linear energy dependence of carrier scattering rate as observed in the normal state of high-TcT_c superconductors.Comment: 16 pages, RevTeX, 7 figures. Also available at http://www-cmg.physics.umd.edu/~lzheng
    • 

    corecore