85 research outputs found

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Climate Change and the Geographic Distribution of Infectious Diseases

    Get PDF
    Our ability to predict the effects of climate change on the spread of infectious diseases is in its infancy. Numerous, and in some cases conflicting, predictions have been developed, principally based on models of biological processes or mapping of current and historical disease statistics. Current debates on whether climate change, relative to socioeconomic determinants, will be a major influence on human disease distributions are useful to help identify research needs but are probably artificially polarized. We have at least identified many of the critical geophysical constraints, transport opportunities, biotic requirements for some disease systems, and some of the socioeconomic factors that govern the process of migration and establishment of parasites and pathogens. Furthermore, we are beginning to develop a mechanistic understanding of many of these variables at specific sites. Better predictive understanding will emerge in the coming years from analyses regarding how these variables interact with each other

    Geographical information system and predictive risk maps of urinary schistosomiasis in Ogun State, Nigeria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The control of urinary schistosomiasis in Ogun State, Nigeria remains inert due to lack of reliable data on the geographical distribution of the disease and the population at risk. To help in developing a control programme, delineating areas of risk, geographical information system and remotely sensed environmental images were used to developed predictive risk maps of the probability of occurrence of the disease and quantify the risk for infection in Ogun State, Nigeria.</p> <p>Methods</p> <p>Infection data used were derived from carefully validated morbidity questionnaires among primary school children in 2001–2002, in which school children were asked among other questions if they have experienced "blood in urine" or urinary schistosomiasis. The infection data from 1,092 schools together with remotely sensed environmental data such as rainfall, vegetation, temperature, soil-types, altitude and land cover were analysis using binary logistic regression models to identify environmental features that influence the spatial distribution of the disease. The final regression equations were then used in Arc View 3.2a GIS software to generate predictive risk maps of the distribution of the disease and population at risk in the state.</p> <p>Results</p> <p>Logistic regression analysis shows that the only significant environmental variable in predicting the presence and absence of urinary schistosomiasis in any area of the State was Land Surface Temperature (LST) (B = 0.308, p = 0.013). While LST (B = -0.478, p = 0.035), rainfall (B = -0.006, p = 0.0005), ferric luvisols (B = 0.539, p = 0.274), dystric nitosols (B = 0.133, p = 0.769) and pellic vertisols (B = 1.386, p = 0.008) soils types were the final variables in the model for predicting the probability of an area having an infection prevalence equivalent to or more than 50%. The two predictive risk maps suggest that urinary schistosomiasis is widely distributed and occurring in all the Local Government Areas (LGAs) in State. The high-risk areas (≥ 50% prevalence) however, are confined to scatter foci in the north western part of the State. The model also estimated that 98.99% of schools aged children (5–14 years) are living in areas suitable for urinary schistosomiasis transmission and are at risk of infection.</p> <p>Conclusion</p> <p>The risk maps developed will hopefully be useful to the state health officials, by providing them with detailed distribution of urinary schistosomiasis, help to delineate areas for intervention, assesses population at risk thereby helping in optimizing scarce resources.</p

    Spatial Distribution of Human Schistosoma japonicum Infections in the Dongting Lake Region, China

    Get PDF
    BACKGROUND: The aim of this study was to spatially model the effect of demographic, reservoir hosts and environmental factors on human Schistosoma japonicum infection prevalence in the Dongting Lake area of Hunan Province, China and to determine the potential of each indicator in targeting schistosomiasis control. METHODOLOGY/PRINCIPAL FINDINGS: Cross-sectional serological, coprological and demographic data were obtained from the 2004 nationwide periodic epidemiologic survey for Hunan Province. Environmental data were downloaded from the USGS EROS data centre. Bayesian geostatistical models were employed for spatial analysis of the infection prevalence among study participants. A total of 47,139 participants from 47 administrative villages were selected. Age, sex and occupation of residents and the presence of infected buffaloes and environmental factors, i.e. NDVI, distance to the lake and endemic type of setting, were significantly associated with S. japonicum infection prevalence. After taking into account spatial correlation, however, only demographic factors (age, sex and occupation) and the presence of infected buffaloes remained significant indicators. CONCLUSIONS/SIGNIFICANCE: Long established demographic factors, as well presence of host reservoirs rather than environmental factors are driving human transmission. Findings of this work can be used for epidemiologic surveillance and for the future planning of interventions in the Dongting Lake area of Hunan Province

    Y-Chromosome Evidence for Common Ancestry of Three Chinese Populations with a High Risk of Esophageal Cancer

    Get PDF
    High rates of esophageal cancer (EC) are found in people of the Henan Taihang Mountain, Fujian Minnan, and Chaoshan regions of China. Historical records describe great waves of populations migrating from north-central China (the Henan and Shanxi Hans) through coastal Fujian Province to the Chaoshan plain. Although these regions are geographically distant, we hypothesized that EC high-risk populations in these three areas could share a common ancestry. Accordingly, we used 16 East Asian-specific Y-chromosome biallelic markers (single nucleotide polymorphisms; Y-SNPs) and six Y-chromosome short tandem repeat (Y-STR) loci to infer the origin of the EC high-risk Chaoshan population (CSP) and the genetic relationship between the CSP and the EC high-risk Henan Taihang Mountain population (HTMP) and Fujian population (FJP). The predominant haplogroups in these three populations are O3*, O3e*, and O3e1, with no significant difference between the populations in the frequency of these genotypes. Frequency distribution and principal component analysis revealed that the CSP is closely related to the HTMP and FJP, even though the former is geographically nearer to other populations (Guangfu and Hakka clans). The FJP is between the CSP and HTMP in the principal component plot. The CSP, FJP and HTMP are more closely related to Chinese Hans than to minorities, except Manchu Chinese, and are descendants of Sino-Tibetans, not Baiyues. Correlation analysis, hierarchical clustering analysis, and phylogenetic analysis (neighbor-joining tree) all support close genetic relatedness among the CSP, FJP and HTMP. The network for haplogroup O3 (including O3*, O3e* and O3e1) showed that the HTMP have highest STR haplotype diversity, suggesting that the HTMP may be a progenitor population for the CSP and FJP. These findings support the potentially important role of shared ancestry in understanding more about the genetic susceptibility in EC etiology in high-risk populations and have implications for determining the molecular basis of this disease

    Global Distribution of Outbreaks of Water-Associated Infectious Diseases

    Get PDF
    Water is essential for maintaining life on Earth but can also serve as a media for many pathogenic organisms, causing a high disease burden globally. However, how the global distribution of water-associated infectious pathogens/diseases looks like and how such distribution is related to possible social and environmental factors remain largely unknown. In this study, we compiled a database on distribution, biology, and epidemiology of water-associated infectious diseases and collected data on population density, annual accumulated temperature, surface water areas, average annual precipitation, and per capita GDP at the global scale. From the database we extracted reported outbreak events from 1991 to 2008 and developed models to explore the association between the distribution of these outbreaks and social and environmental factors. A total of1,428 outbreaks had been reported and this number only reflected ‘the tip of the iceberg’ of the much bigger problem. We found that the outbreaks of water-associated infectious diseases are significantly correlated with social and environmental factors and that all regions are affected disproportionately by different categories of diseases. Relative risk maps are generated to show ‘hotspots’ of risks for different diseases. Despite certain limitations, the findings may be instrumental for future studies and prioritizing health resources

    Anatomical and Functional Deficits in Patients with Amnestic Mild Cognitive Impairment

    Get PDF
    Background: Anatomical and functional deficits have been studied in patients with amnestic mild cognitive impairment (MCI). However, it is unclear whether and how the anatomical deficits are related to the functional alterations. Present study aims to characterize the association between anatomical and functional deficits in MCI patients. Methods: Seventeen amnestic MCI patients and 18 healthy aging controls were scanned using a T1 Weighted MPRAGE sequence and a gradient-echo echo-planar imaging sequence. Clinical severity of MCI patients was evaluated by usin

    Impairment of Immunoproteasome Function by β5i/LMP7 Subunit Deficiency Results in Severe Enterovirus Myocarditis

    Get PDF
    Proteasomes recognize and degrade poly-ubiquitinylated proteins. In infectious disease, cells activated by interferons (IFNs) express three unique catalytic subunits β1i/LMP2, β2i/MECL-1 and β5i/LMP7 forming an alternative proteasome isoform, the immunoproteasome (IP). The in vivo function of IPs in pathogen-induced inflammation is still a matter of controversy. IPs were mainly associated with MHC class I antigen processing. However, recent findings pointed to a more general function of IPs in response to cytokine stress. Here, we report on the role of IPs in acute coxsackievirus B3 (CVB3) myocarditis reflecting one of the most common viral disease entities among young people. Despite identical viral load in both control and IP-deficient mice, IP-deficiency was associated with severe acute heart muscle injury reflected by large foci of inflammatory lesions and severe myocardial tissue damage. Exacerbation of acute heart muscle injury in this host was ascribed to disequilibrium in protein homeostasis in viral heart disease as indicated by the detection of increased proteotoxic stress in cytokine-challenged cardiomyocytes and inflammatory cells from IP-deficient mice. In fact, due to IP-dependent removal of poly-ubiquitinylated protein aggregates in the injured myocardium IPs protected CVB3-challenged mice from oxidant-protein damage. Impaired NFκB activation in IP-deficient cardiomyocytes and inflammatory cells and proteotoxic stress in combination with severe inflammation in CVB3-challenged hearts from IP-deficient mice potentiated apoptotic cell death in this host, thus exacerbating acute tissue damage. Adoptive T cell transfer studies in IP-deficient mice are in agreement with data pointing towards an effective CD8 T cell immune. This study therefore demonstrates that IP formation primarily protects the target organ of CVB3 infection from excessive inflammatory tissue damage in a virus-induced proinflammatory cytokine milieu

    Trends in Notifiable Infectious Diseases in China: Implications for Surveillance and Population Health Policy

    Get PDF
    This study aimed to analyse trends in notifiable infectious diseases in China, in their historical context. Both English and Chinese literature was searched and diseases were categorised according to the type of disease or transmission route. Temporal trends of morbidity and mortality rates were calculated for eight major infectious diseases types. Strong government commitment to public health responses and improvements in quality of life has led to the eradication or containment of a wide range of infectious diseases in China. The overall infectious diseases burden experienced a dramatic drop during 1975–1995, but since then, it reverted and maintained a gradual upward trend to date. Most notifiable diseases are contained at a low endemic level; however, local small-scale outbreaks remain common. Tuberculosis, as a bacterial infection, has re-emerged since the 1990s and has become prevalent in the country. Sexually transmitted infections are in a rapid, exponential growth phase, spreading from core groups to the general population. Together human immunodeficiency virus (HIV), they account for 39% of all death cases due to infectious diseases in China in 2008. Zoonotic infections, such as severe acute respiratory syndrome (SARS), rabies and influenza, pose constant threats to Chinese residents and remain the most deadly disease type among the infected individuals. Therefore, second-generation surveillance of behavioural risks or vectors associated with pathogen transmission should be scaled up. It is necessary to implement public health interventions that target HIV and relevant coinfections, address transmission associated with highly mobile populations, and reduce the risk of cross-species transmission of zoonotic pathogens
    corecore