1,573 research outputs found
Optimized linear physical-layer network coding of full-rate full-diversity in MIMO two-way relay networks
© 2017 IEEE. In multiple-input multiple-output (MIMO) two-way relay networks (TWRN), linear physical-layer network coding (LPNC) was proposed to boost the throughput by using spatial multiplexing at source nodes. How to design optimal LPNC for full-rate full-diversity MIMO TWRN is still an open problem. In this paper, we propose a full-rate full-diversity (FRFD) LPNC scheme. In this scheme, two source nodes, each with two antennas, transmit full-rate universal space-time codes to a two-antenna relay simultaneously. Then, the relay applies LPNC to compute multiple network-coded (NC) messages. In particular, we explicitly solve the optimal LPNC mapping to minimize decoding errors of NC messages in the FRFD LPNC scheme. Our analytical results verify that the optimal FRFD LPNC scheme guarantees the full-diversity and full-rate transmission at the same time. Simulation results are consistent with the analytical results and further demonstrate that our optimal FRFD LPNC scheme outperforms the conventional MIMO LPNC scheme
Spin-polarized transport in a lateral two-dimensional diluted magnetic semiconductor electron gas
The transport property of a lateral two-dimensional diluted magnetic
semiconductor electron gas under a spatially periodic magnetic field is
investigated theoretically. We find that the electron Fermi velocity along the
modulation direction is highly spin-dependent even if the spin polarization of
the carrier population is negligibly small. It turns out that this
spin-polarized Fermi velocity alone can lead to a strong spin polarization of
the current, which is still robust against the energy broadening effect induced
by the impurity scattering.Comment: 3 pages, 3 figures, submitted to Appl. Phys. Let
Interplay between s-d exchange interaction and Rashba effect: spin-polarized transport
We investigate the spin-polarized transport properties of a two-dimensional
electron gas in a n-type diluted magnetic narrow gap semiconductor quantum well
subjected to a perpendicular magnetic and electric field. Interesting beating
patterns in the magneto resistance are found which can be tuned significantly
by varying the electric field. A resonant enhancement of spin-polarized current
is found which is induced by the competition between the s-d exchange
interaction and the Rashba effect [Y. A. Bychkov and E. I. Rashba, J. Phys. C
17, 6039 (1984)].Comment: 4 pages, 3 figures, Appl. Phys. Lett. (in press
Genes Underlying Positive Influence Of Prenatal Environmental Enrichment And Negative Influence Of Prenatal Earthquake Simulation And Corrective Influence Of Chinese Herbalmedicine On Rat Offspring: Irf7 And Ninj2
Background: Prenatal environmental enrichment (EE) has been proven to positively affect but prenatal stress negatively influence the physiological and psychological processes in animals, whose trans-generational genetic mechanism remains unclearly defined. We aimed to investigate and find out key genes underlying the positive-negative effects derived from prenatal interventions.Materials and Methods: Pregnant rats were randomized into EE group (EEG), earthquake simulation group (ESG), herbal group (HG) received herbal supplements in feed after earthquake simulation, and control group (CG).Results: Light Box Defecation Test (LBDT) showed EEG offspring presented less fecal pellets than CG offspring, ESG’s more than CG’s, and HG’s less than ESG (p’s<0.05). Open-field Test (OFT) score of EEG was higher than CG offspring, of ESG’s was lower than CG’s, and HG’s higher than ESG’s. Irf7 and Ninj were screened, which were up-regulated in EEG, down-regulated in ESG (FC<0.5), and were neutralized in HG. Prenatal EE could positively promote the nervous system development, prenatal earthquake simulation could retard the nervous system development and Chinese herbal remedy (JKSQW) which could correct the retardation.Conclusion: The negative-positive prenatal effect could contribute to altered gene expression of Irf7 and Ninj2 which also could play a key role in the improving function of JKSQWfor the kidneys.Keywords: Prenatal stress; Earthquake simulation; Light Box Defecation Test; Open-field Test; Irf7; Ninj
Operator entanglement of two-qubit joint unitary operations revisited: Schmidt number approach
Operator entanglement of two-qubit joint unitary operations is revisited.
Schmidt number is an important attribute of a two-qubit unitary operation, and
may have connection with the entanglement measure of the unitary operator. We
found the entanglement measure of two-qubit unitary operators is classified by
the Schmidt number of the unitary operators. The exact relation between the
operator entanglement and the parameters of the unitary operator is clarified
too.Comment: To appear in the Brazilian Journal of Physic
Development and validation study of a non-alcoholic fatty liver disease risk scoring model among adults in China
Background: Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases in China. It is usually asymptomatic and transabdominal ultrasound (USS) is the usual means for diagnosis, but it may not be feasible to have USS screening of the whole population. Objective: To develop a risk scoring model for predicting the presence of NAFLD using parameters that can be easily obtain in clinical settings. Methods: A retrospective study on the data of 672 adults who had general health check including a transabdominal ultrasound. Fractional polynomial and multivariable logistic regressions of sociodemographic and biochemical variables on NAFLD were used to identify the predictors. A risk score was assigned to each predictor using the scaled standardized β-coefficient to create a risk prediction algorithm. The accuracy for NAFLD detection by each cut-off score in the risk algorithm was evaluated. Results: The prevalence of NAFLD in our study population was 33.0% (222/672). Six significant factors were selected in the final prediction model. The areas under the curve (AUC) was 0.82 (95% CI: 0.78–0.85). The optimal cut-off score, based on the ROC was 35, with a sensitivity of 76.58% (95% CI: 70.44–81.98%) and specificity of 74.89% (95% CI: 70.62–78.83%). Conclusion: A NAFLD risk scoring model can be used to identify asymptomatic Chinese people who are at risk of NAFLD for further USS investigation.published_or_final_versio
Deep Underground Neutrino Experiment (DUNE) near detector conceptual design report
The Deep Underground Neutrino Experiment (DUNE) is an international, world-class experiment aimed at exploring fundamental questions about the universe that are at the forefront of astrophysics and particle physics research. DUNE will study questions pertaining to the preponderance of matter over antimatter in the early universe, the dynamics of supernovae, the subtleties of neutrino interaction physics, and a number of beyond the Standard Model topics accessible in a powerful neutrino beam. A critical component of the DUNE physics program involves the study of changes in a powerful beam of neutrinos, i.e., neutrino oscillations, as the neutrinos propagate a long distance. The experiment consists of a near detector, sited close to the source of the beam, and a far detector, sited along the beam at a large distance. This document, the DUNE Near Detector Conceptual Design Report (CDR), describes the design of the DUNE near detector and the science program that drives the design and technology choices. The goals and requirements underlying the design, along with projected performance are given. It serves as a starting point for a more detailed design that will be described in future documents
Facile Phosphine-Free Synthesis of CdSe/ZnS Core/Shell Nanocrystals Without Precursor Injection
A new simple method for synthesis of core/shell CdSe/ZnS nanocrystals (NCs) is present. By adapting the use of cadmium stearate, oleylamine, and paraffin liquid to a non-injection synthesis and by applying a subsequent ZnS shelling procedure to CdSe NCs cores using Zinc acetate dihydrate and sulfur powder, luminescent CdSe/ZnS NCs with quantum yields of up to 36% (FWHM 42–43 nm) were obtained. A seeding-growth technique was first applied to the controlled synthesis of ZnS shell. This method has several attractive features, such as the usage of low-cost, green, and environmentally friendlier reagents and elimination of the need for air-sensitive, toxic, and expensive phosphines solvent. Furthermore, due to one-pot synthetic route for CdSe/ZnS NCs, the approach presented herein is accessible to a mass production of these NCs
- …