273 research outputs found

    Modulation of β-Catenin Signaling by Glucagon Receptor Activation

    Get PDF
    The glucagon receptor (GCGR) is a member of the class B G protein–coupled receptor family. Activation of GCGR by glucagon leads to increased glucose production by the liver. Thus, glucagon is a key component of glucose homeostasis by counteracting the effect of insulin. In this report, we found that in addition to activation of the classic cAMP/protein kinase A (PKA) pathway, activation of GCGR also induced β-catenin stabilization and activated β-catenin–mediated transcription. Activation of β-catenin signaling was PKA-dependent, consistent with previous reports on the parathyroid hormone receptor type 1 (PTH1R) and glucagon-like peptide 1 (GLP-1R) receptors. Since low-density-lipoprotein receptor–related protein 5 (Lrp5) is an essential co-receptor required for Wnt protein mediated β-catenin signaling, we examined the role of Lrp5 in glucagon-induced β-catenin signaling. Cotransfection with Lrp5 enhanced the glucagon-induced β-catenin stabilization and TCF promoter–mediated transcription. Inhibiting Lrp5/6 function using Dickkopf-1(DKK1) or by expression of the Lrp5 extracellular domain blocked glucagon-induced β-catenin signaling. Furthermore, we showed that Lrp5 physically interacted with GCGR by immunoprecipitation and bioluminescence resonance energy transfer assays. Together, these results reveal an unexpected crosstalk between glucagon and β-catenin signaling, and may help to explain the metabolic phenotypes of Lrp5/6 mutations

    Diffractive Dijet Production at sqrt(s)=630 and 1800 GeV at the Fermilab Tevatron

    Get PDF
    We report a measurement of the diffractive structure function FjjDF_{jj}^D of the antiproton obtained from a study of dijet events produced in association with a leading antiproton in pˉp\bar pp collisions at s=630\sqrt s=630 GeV at the Fermilab Tevatron. The ratio of FjjDF_{jj}^D at s=630\sqrt s=630 GeV to FjjDF_{jj}^D obtained from a similar measurement at s=1800\sqrt s=1800 GeV is compared with expectations from QCD factorization and with theoretical predictions. We also report a measurement of the ξ\xi (xx-Pomeron) and β\beta (xx of parton in Pomeron) dependence of FjjDF_{jj}^D at s=1800\sqrt s=1800 GeV. In the region 0.035<ξ<0.0950.035<\xi<0.095, t<1|t|<1 GeV2^2 and β<0.5\beta<0.5, FjjD(β,ξ)F_{jj}^D(\beta,\xi) is found to be of the form β1.0±0.1ξ0.9±0.1\beta^{-1.0\pm 0.1} \xi^{-0.9\pm 0.1}, which obeys β\beta-ξ\xi factorization.Comment: LaTeX, 9 pages, Submitted to Phys. Rev. Letter

    A Study of B0 -> J/psi K(*)0 pi+ pi- Decays with the Collider Detector at Fermilab

    Get PDF
    We report a study of the decays B0 -> J/psi K(*)0 pi+ pi-, which involve the creation of a u u-bar or d d-bar quark pair in addition to a b-bar -> c-bar(c s-bar) decay. The data sample consists of 110 1/pb of p p-bar collisions at sqrt{s} = 1.8 TeV collected by the CDF detector at the Fermilab Tevatron collider during 1992-1995. We measure the branching ratios to be BR(B0 -> J/psi K*0 pi+ pi-) = (8.0 +- 2.2 +- 1.5) * 10^{-4} and BR(B0 -> J/psi K0 pi+ pi-) = (1.1 +- 0.4 +- 0.2) * 10^{-3}. Contributions to these decays are seen from psi(2S) K(*)0, J/psi K0 rho0, J/psi K*+ pi-, and J/psi K1(1270)

    Budding Yeast Pch2, a Widely Conserved Meiotic Protein, Is Involved in the Initiation of Meiotic Recombination

    Get PDF
    Budding yeast Pch2 protein is a widely conserved meiosis-specific protein whose role is implicated in the control of formation and displacement of meiotic crossover events. In contrast to previous studies where the function of Pch2 was implicated in the steps after meiotic double-strand breaks (DSBs) are formed, we present evidence that Pch2 is involved in meiotic DSB formation, the initiation step of meiotic recombination. The reduction of DSB formation caused by the pch2 mutation is most prominent in the sae2 mutant background, whereas the impact remains mild in the rad51 dmc1 double mutant background. The DSB reduction is further pronounced when pch2 is combined with a hypomorphic allele of SPO11. Interestingly, the level of DSB reduction is highly variable between chromosomes, with minimal impact on small chromosomes VI and III. We propose a model in which Pch2 ensures efficient formation of meiotic DSBs which is necessary for igniting the subsequent meiotic checkpoint responses that lead to proper differentiation of meiotic recombinants

    Low-dose retinoic acid enhances in vitro invasiveness of human oral squamous-cell-carcinoma cell lines

    Get PDF
    Retinoids inhibit the proliferation of several types of tumour cells, and are used for patients with several malignant tumours. In this study, we examined the effect of retinoic acids (RAs) on the invasive potentials of the oral squamous cell carcinoma (SCC) cells, BHY and HNt. BHY cells expressed all of retinoid nuclear receptors (RARα, β, γ, and RXRα) and cytoplasmic retinoic acid binding proteins (CRABP1 and CRABP2). HNt cells lacked the expression of RARβ, but expressed other nuclear receptors and CRABPs. All-trans retinoic acid (ATRA) and 13-cis retinoic acid (13-cisRA) (10−6and 10−7M) inhibited the growth of the cells, but low-dose ATRA and 13-cisRA (10−8M) marginally affected the growth of the cells. Surprisingly, low-dose RAs enhanced the activity of tissue-type plasminogen activator (tPA), and activated pro-matrix metalloproteinases (proMMP2 and proMMP9). Activation of proMMP2 and proMMP9 was inhibited by aprotinin, a serine-proteinase, tPA inhibitor. Furthermore, low-dose RAs enhanced the in vitro invasiveness of BHY cells. These results indicate that low-dose RAs enhances the in vitro invasiveness of oral SCC cells via an activation of proMMP2 and proMMP9 probably mediated by the induction of tPA. © 2001 Cancer Research Campaign http://www.bjcancer.co

    Pch2 Acts through Xrs2 and Tel1/ATM to Modulate Interhomolog Bias and Checkpoint Function during Meiosis

    Get PDF
    Proper segregation of chromosomes during meiosis requires the formation and repair of double-strand breaks (DSBs) to form crossovers. Repair is biased toward using the homolog as a substrate rather than the sister chromatid. Pch2 is a conserved member of the AAA+-ATPase family of proteins and is implicated in a wide range of meiosis-specific processes including the recombination checkpoint, maturation of the chromosome axis, crossover control, and synapsis. We demonstrate a role for Pch2 in promoting and regulating interhomolog bias and the meiotic recombination checkpoint in response to unprocessed DSBs through the activation of axial proteins Hop1 and Mek1 in budding yeast. We show that Pch2 physically interacts with the putative BRCT repeats in the N-terminal region of Xrs2, a member of the MRX complex that acts at sites of unprocessed DSBs. Pch2, Xrs2, and the ATM ortholog Tel1 function in the same pathway leading to the phosphorylation of Hop1, independent of Rad17 and the ATR ortholog Mec1, which respond to the presence of single-stranded DNA. An N-terminal deletion of Xrs2 recapitulates the pch2Δ phenotypes for signaling unresected breaks. We propose that interaction with Xrs2 may enable Pch2 to remodel chromosome structure adjacent to the site of a DSB and thereby promote accessibility of Hop1 to the Tel1 kinase. In addition, Xrs2, like Pch2, is required for checkpoint-mediated delay conferred by the failure to synapse chromosomes

    Mechanisms of TSC-mediated Control of Synapse Assembly and Axon Guidance

    Get PDF
    Tuberous sclerosis complex is a dominant genetic disorder produced by mutations in either of two tumor suppressor genes, TSC1 and TSC2; it is characterized by hamartomatous tumors, and is associated with severe neurological and behavioral disturbances. Mutations in TSC1 or TSC2 deregulate a conserved growth control pathway that includes Ras homolog enriched in brain (Rheb) and Target of Rapamycin (TOR). To understand the function of this pathway in neural development, we have examined the contributions of multiple components of this pathway in both neuromuscular junction assembly and photoreceptor axon guidance in Drosophila. Expression of Rheb in the motoneuron, but not the muscle of the larval neuromuscular junction produced synaptic overgrowth and enhanced synaptic function, while reductions in Rheb function compromised synapse development. Synapse growth produced by Rheb is insensitive to rapamycin, an inhibitor of Tor complex 1, and requires wishful thinking, a bone morphogenetic protein receptor critical for functional synapse expansion. In the visual system, loss of Tsc1 in the developing retina disrupted axon guidance independently of cellular growth. Inhibiting Tor complex 1 with rapamycin or eliminating the Tor complex 1 effector, S6 kinase (S6k), did not rescue axon guidance abnormalities of Tsc1 mosaics, while reductions in Tor function suppressed those phenotypes. These findings show that Tsc-mediated control of axon guidance and synapse assembly occurs via growth-independent signaling mechanisms, and suggest that Tor complex 2, a regulator of actin organization, is critical in these aspects of neuronal development

    Search for Single-Top-Quark Production in p-pbar Collisions at sqrt(s)=1.8 TeV

    Full text link
    We search for standard model single-top-quark production in the W-gluon fusion and W* channels using 106 pb^-1 of data from p-pbar collisions at sqrt(s)=1.8 TeV collected with the Collider Detector at Fermilab. We set an upper limit at 95% C.L. on the combined W-gluon fusion and W* single-top cross section of 14 pb, roughly six times larger than the standard model prediction. Separate 95% C.L. upper limits in the W-gluon fusion and W* channels are also determined and are found to be 13 and 18 pb, respectively.Comment: 6 pages, 2 figures; submitted to Phys. Rev. Let

    Measurement of the polar-angle distribution of leptons from W boson decay as a function of the W transverse momentum in proton-antiproton collisions at sqrt{s}=1.8 TeV

    Get PDF
    We present a measurement of the coefficient alpha_2 of the leptonic polar-angle distribution from W boson decays, as a function of the W transverse momentum. The measurement uses an 80+/-4 pb^{-1} sample of proton-antiproton collisions at sqrt{s}=1.8 TeV collected by the CDF detector and includes data from both the W->e+nu and W->mu+nu decay channels. We fit the W boson transverse mass distribution to a set of templates from a Monte Carlo event generator and detector simulation in several ranges of the W transverse momentum. The measurement agrees with the Standard Model expectation, whereby the ratio of longitudinally to transversely polarized W bosons, in the Collins-Soper W rest frame, increases with the W transverse momentum at a rate of approximately 15% per 10 GeV/c.Comment: 47 pages, 16 figures, submitted to Physical Review

    Observation of the Decay B=> J/psi eta K and Search for X(3872)=> J/psi eta

    Full text link
    We report the observation of the BB meson decay B±J/ψηK±B^\pm\to J/\psi \eta K^\pm and evidence for the decay B0J/ψηKS0B^0\to J/\psi \eta K^0_S, using {90} million BBbarBBbar events collected at the \ensuremath{\Upsilon{(4S)}}\xspace resonance with the BaBarBaBar detector at the PEP-II e+ee^+ e^- asymmetric-energy storage ring. We obtain branching fractions of B\cal{B}(B±J/ψηK±(B^\pm\to J/\psi \eta K^{\pm})=(10.8±2.3(stat.)±2.4(syst.))×105(10.8\pm 2.3(\rm{stat.})\pm 2.4(\rm{syst.}))\times 10^{-5} and B\cal{B}(B0J/ψηKS0(B^0\to J/\psi\eta K_{\rm{S}}^{0})=(8.4±2.6(stat.)±2.7(syst.))×105(8.4\pm 2.6(\rm{stat.})\pm 2.7(\rm{syst.}))\times 10^{-5}. We search for the new narrow mass state, the X(3872), recently reported by the Belle Collaboration, in the decay B^\pm\to X(3872)K^\pm, X(3872)\to \jpsi \eta and determine an upper limit of B\cal{B}(B^\pm \to X(3872) K^\pm \to \jpsi \eta K^\pm) <7.7×106<7.7\times 10^{-6} at 90% C.L.Comment: 7 pages and two figures, submitted to Phys. Rev. Lett
    corecore