483 research outputs found
Some effects of different constitutive laws on simulating mitral valve dynamics with FSI
In this paper, three different constitutive laws for mitral leaflets and two laws for chordae tendineae are selected to study their effects on mitral valve dynamics with fluid-structure interaction. We first fit these three mitral leaflet constitutive laws and two chordae tendineae laws with experimental data. The fluid-structure interaction is implemented in an immersed boundary framework with finite element extension for solid, that is the hybrid immersed boundary/finite element(IB/FE) method. We specifically compare the fluid-structure results of different constitutive laws since fluid-structure interaction is the physiological loading environment. This allows us to look at the peak jet velocity, the closure regurgitation volume, and the orifice area. Our numerical results show that different constitutive laws can affect mitral valve dynamics, such as the transvalvular flow rate, closure regurgitation and the orifice area, while the differences in fiber strain and stress are insignificant because all leaflet constitutive laws are fitted to the same set of experimental data. In addition, when an exponential constitutive law of chordae tendineae is used, a lower closure regurgitation flow is observed compared to that of a linear material model. In conclusion, combining numerical dynamic simulations and static experimental tests, we are able to identify suitable constitutive laws for dynamic behaviour of mitral leaflets and chordae under physiological conditions
Digital Quantum Simulation with Rydberg Atoms
We discuss in detail the implementation of an open-system quantum simulator
with Rydberg states of neutral atoms held in an optical lattice. Our scheme
allows one to realize both coherent as well as dissipative dynamics of complex
spin models involving many-body interactions and constraints. The central
building block of the simulation scheme is constituted by a mesoscopic Rydberg
gate that permits the entanglement of several atoms in an efficient, robust and
quick protocol. In addition, optical pumping on ancillary atoms provides the
dissipative ingredient for engineering the coupling between the system and a
tailored environment. As an illustration, we discuss how the simulator enables
the simulation of coherent evolution of quantum spin models such as the
two-dimensional Heisenberg model and Kitaev's toric code, which involves
four-body spin interactions. We moreover show that in principle also the
simulation of lattice fermions can be achieved. As an example for controlled
dissipative dynamics, we discuss ground state cooling of frustration-free spin
Hamiltonians.Comment: submitted to special issue "Quantum Information with Neutral
Particles" of "Quantum Information Processing
Direct Measurements of the Branching Fractions for and and Determinations of the Form Factors and
The absolute branching fractions for the decays and
are determined using singly
tagged sample from the data collected around 3.773 GeV with the
BES-II detector at the BEPC. In the system recoiling against the singly tagged
meson, events for and events for decays are observed. Those yield
the absolute branching fractions to be and . The
vector form factors are determined to be
and . The ratio of the two form
factors is measured to be .Comment: 6 pages, 5 figure
The pole in
Using a sample of 58 million events recorded in the BESII detector,
the decay is studied. There are conspicuous
and signals. At low mass, a large
broad peak due to the is observed, and its pole position is determined
to be - MeV from the mean of six analyses.
The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL
Observation of the decay \psip\rar\kstark
Using 14 million events collected with the BESII detector,
branching fractions of \psip\rar\kstarkpm and \kstarknn are determined to
be: \calB(\psip\rar\kstarkpm)=(2.9^{+1.3}_{-1.7}\pm0.4)\times 10^{-5} and
\calB(\psip\rar\kstarknn)=(13.3^{+2.4}_{-2.7}\pm1.9)\times 10^{-5}. The
results confirm the violation of the "12%" rule for these two decay channels
with higher precision. A large isospin violation between the charged and
neutral modes is observed.Comment: 5 pages, 3 figure
Search for the Lepton Flavor Violation Processes and
The lepton flavor violation processes and are
searched for using a sample of 5.8 events collected with
the BESII detector. Zero and one candidate events, consistent with the
estimated background, are observed in and
decays, respectively. Upper limits on the branching ratios are determined to be
and at the 90% confidence level (C.L.).Comment: 9 pages, 2 figure
Measurements of J/psi Decays into 2(pi+pi-)eta and 3(pi+pi-)eta
Based on a sample of 5.8X 10^7 J/psi events taken with the BESII detector,
the branching fractions of J/psi--> 2(pi+pi-)eta and J/psi-->3(pi+pi-)eta are
measured for the first time to be (2.26+-0.08+-0.27)X10^{-3} and
(7.24+-0.96+-1.11)X10^{-4}, respectively.Comment: 11 pages, 6 figure
BESII Detector Simulation
A Monte Carlo program based on Geant3 has been developed for BESII detector
simulation. The organization of the program is outlined, and the digitization
procedure for simulating the response of various sub-detectors is described.
Comparisons with data show that the performance of the program is generally
satisfactory.Comment: 17 pages, 14 figures, uses elsart.cls, to be submitted to NIM
Measurement of branching fractions for the inclusive Cabibbo-favored ~K*0(892) and Cabibbo-suppressed K*0(892) decays of neutral and charged D mesons
The branching fractions for the inclusive Cabibbo-favored ~K*0 and
Cabibbo-suppressed K*0 decays of D mesons are measured based on a data sample
of 33 pb-1 collected at and around the center-of-mass energy of 3.773 GeV with
the BES-II detector at the BEPC collider. The branching fractions for the
decays D+(0) -> ~K*0(892)X and D0 -> K*0(892)X are determined to be BF(D0 ->
\~K*0X) = (8.7 +/- 4.0 +/- 1.2)%, BF(D+ -> ~K*0X) = (23.2 +/- 4.5 +/- 3.0)% and
BF(D0 -> K*0X) = (2.8 +/- 1.2 +/- 0.4)%. An upper limit on the branching
fraction at 90% C.L. for the decay D+ -> K*0(892)X is set to be BF(D+ -> K*0X)
< 6.6%
Study of
New data are presented on from a sample of 58M
events in the upgraded BES II detector at the BEPC. There is a
conspicuous signal for and a peak at higher mass which
may be fitted with . From a combined analysis with
data, the branching ratio
is at the 95%
confidence level.Comment: 11 pages, 5 figures. Submitted to Phys. Lett.
- …