43,293 research outputs found

    Robust H∞ filtering for networked systems with multiple state delays

    Get PDF
    This is the post print version of the article. The official published version can be obtained from the link below - Copyright 2007 Taylor & Francis Ltd.In this paper, a new robust H∞ filter design problem is studied for a class of networked systems with multiple state-delays. Two kinds of incomplete measurements, namely, measurements with random delays and measurements with stochastic missing phenomenon, are simultaneously considered. Such incomplete measurements are induced by the limited bandwidth of communication networks, and are modelled as a linear function of a certain set of indicator functions that depend on the same stochastic variable. Attention is focused on the analysis and design problems of a full-order robust H∞ filter such that, for all admissible parameter uncertainties and all possible incomplete measurements, the filtering error dynamics is exponentially mean-square stable and a prescribed H∞ attenuation level is guaranteed. Some recently reported methodologies, such as delay-dependent and parameter-dependent stability analysis approaches, are employed to obtain less conservative results. Sufficient conditions, which are dependent on the occurrence probability of both the random sensor delay and missing measurement, are established for the existence of the desired filters in terms of certain linear matrix inequalities (LMIs). When these LMIs are feasible, the explicit expression of the desired filter can also be characterized. Finally, numerical examples are given to illustrate the effectiveness and applicability of the proposed design method.This work was supported by the National Natural Science Foundation of China under Grant 60574084, the National 863 Project of China under Grant 2006AA04Z428, and the National 973 Program of China under Grant 2002CB312200

    Robust H∞ filtering for time-delay systems with probabilistic sensor faults

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.In this paper, a new robust H∞ filtering problem is investigated for a class of time-varying nonlinear system with norm-bounded parameter uncertainties, bounded state delay, sector-bounded nonlinearity and probabilistic sensor gain faults. The probabilistic sensor reductions are modeled by using a random variable that obeys a specific distribution in a known interval [alpha,beta], which accounts for the following two phenomenon: 1) signal stochastic attenuation in unreliable analog channel and 2) random sensor gain reduction in severe environment. The main task is to design a robust H∞ filter such that, for all possible uncertain measurements, system parameter uncertainties, nonlinearity as well as time-varying delays, the filtering error dynamics is asymptotically mean-square stable with a prescribed H∞ performance level. A sufficient condition for the existence of such a filter is presented in terms of the feasibility of a certain linear matrix inequality (LMI). A numerical example is introduced to illustrate the effectiveness and applicability of the proposed methodology

    Filtering for networked stochastic time-delay systems with sector nonlinearity

    Get PDF
    Copyright [2009] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the filtering problem for a class of discrete-time stochastic nonlinear networked control systems with network-induced incomplete measurements. The incomplete measurements include both the multiple random communication delays and random packet losses, which are modeled by a unified stochastic expression in terms of a set of indicator functions that is dependent on certain stochastic variable. The nonlinear functions are assumed to satisfy the sector nonlinearities. The purpose of the addressed filtering problem is to design a linear filter such that the filtering-error dynamics is exponentially mean-square stable. By using the linear-matrix-inequality (LMI) method and delay-dependent technique, sufficient conditions are derived which are dependent on the occurrence probability of both the random communication delays and missing measurement. The filter gain is then characterized by the solution to a set of LMIs. A simulation example is exploited to demonstrate the effectiveness of the proposed design procedures

    Robust fault detection for networked systems with distributed sensors

    Get PDF
    Copyright [2011] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the robust fault detection problem for a class of discrete-time networked systems with distributed sensors. Since the bandwidth of the communication channel is limited, packets from different sensors may be dropped with different missing rates during the transmission. Therefore, a diagonal matrix is introduced to describe the multiple packet dropout phenomenon and the parameter uncertainties are supposed to reside in a polytope. The aim is to design a robust fault detection filter such that, for all probabilistic packet dropouts, all unknown inputs and admissible uncertain parameters, the error between the residual (generated by the fault detection filter) and the fault signal is made as small as possible. Two parameter-dependent approaches are proposed to obtain less conservative results. The existence of the desired fault detection filter can be determined from the feasibility of a set of linear matrix inequalities that can be easily solved by the efficient convex optimization method. A simulation example on a networked three-tank system is provided to illustrate the effectiveness and applicability of the proposed techniques.This work was supported by national 973 project under Grants 2009CB320602 and 2010CB731800, and the NSFC under Grants 60721003 and 60736026

    Event-based recursive distributed filtering over wireless sensor networks

    Get PDF
    In this technical note, the distributed filtering problem is investigated for a class of discrete time-varying systems with an event-based communication mechanism. Each intelligent sensor node transmits the data to its neighbors only when the local innovation violates a predetermined Send-on-Delta (SoD) data transmission condition. The aim of the proposed problem is to construct a distributed filter for each sensor node subject to sporadic communications over wireless networks. In terms of an event indicator variable, the triggering information is utilized so as to reduce the conservatism in the filter analysis. An upper bound for the filtering error covariance is obtained in form of Riccati-like difference equations by utilizing the inductive method. Subsequently, such an upper bound is minimized by appropriately designing the filter parameters iteratively, where a novel matrix simplification technique is developed to handle the challenges resulting from the sparseness of the sensor network topology and filter structure preserving issues. The effectiveness of the proposed strategy is illustrated by a numerical simulation.This work is supported by National Basic Research Program of China (973 Program) under Grant 2010CB731800, National Natural Science Foundation of China under Grants 61210012, 61290324, 61473163 and 61273156, and Jiangsu Provincial Key Laboratory of E-business at Nanjing University of Jiangsu and Economics of China under Grant JSEB201301

    Event-based H∞ consensus control of multi-agent systems with relative output feedback: The finite-horizon case

    Get PDF
    In this technical note, the H∞ consensus control problem is investigated over a finite horizon for general discrete time-varying multi-agent systems subject to energy-bounded external disturbances. A decentralized estimation-based output feedback control protocol is put forward via the relative output measurements. A novel event-based mechanism is proposed for each intelligent agent to utilize the available information in order to decide when to broadcast messages and update control input. The aim of the problem addressed is to co-design the time-varying controller and estimator parameters such that the controlled multi-agent systems achieve consensus with a disturbance attenuation level γ over a finite horizon [0,T]. A constrained recursive Riccati difference equation approach is developed to derive the sufficient conditions under which the H∞ consensus performance is guaranteed in the framework of event-based scheme. Furthermore, the desired controller and estimator parameters can be iteratively computed by resorting to the Moore-Penrose pseudo inverse. Finally, the effectiveness of the developed event-based H∞ consensus control strategy is demonstrated in the numerical simulation

    A Dynamic Analysis of Moving Average Rules

    Get PDF
    The use of various moving average rules remains popular with financial market practitioners. These rules have recently become the focus of a number empirical studies, but there have been very few studies of financial market models where some agents employ technical trading rules also used in practice. In this paper we propose a dynamic financial market model in which demand for traded assets has both a fundamentalist and a chartist component. The chartist demand is governed by the difference between current price and a (long run) moving average. Both types of traders are boundedly rational in the sense that, based on a fitness measure such as realized capital gains, traders switch from a strategy with low fitness to the one with high fitness. We characterize the stability and bifurcation properties of the underlying deterministic model via the reaction coefficient of the fundamentalists, the extrapolation rate of the chartists and the lag lengths used for the moving averages. By increasing the intensity of choice to switching strategies, we then examine various rational routes to randomness for different moving average rules. The price dynamics of the moving average rule is also examined and one of our main findings is that an increase of the window length of the moving average rule can destabilize an otherwise stable system, leading to more complicated, even chaotic behaviour. The analysis of the corresponding stochastic model is able to explain various market price phenomena, including temporary bubbles, sudden market crashes, price resistance and price switching between different levels.
    corecore