334 research outputs found

    Density dependence of the symmetry energy from neutron skin thickness in finite nuclei

    Get PDF
    The density dependence of the symmetry energy around saturation density, characterized by the slope parameter L, is studied using information provided by the neutron skin thickness in finite nuclei. An estimate for L is obtained from experimental data on neutron skins extracted from antiprotonic atoms. We also discuss the ability of parity-violating elastic electron scattering to obtain information on the neutron skin thickness in 208Pb and to constrain the density dependence of the nuclear symmetry energy. The size and shape of the neutron density distribution of 208Pb predicted by mean-field models is briefly addressed. We conclude with a comparative overview of the L values predicted by several existing determinations.Comment: 17 pages, 10 figures, submitted to EPJA special volume on Nuclear Symmetry Energ

    Nuclear symmetry energy and neutron skin thickness

    Full text link
    The relation between the slope of the nuclear symmetry energy at saturation density and the neutron skin thickness is investigated. Constraints on the slope of the symmetry energy are deduced from the neutron skin data obtained in experiments with antiprotonic atoms. Two types of neutron skin are distinguished: the "surface" and the "bulk". A combination of both types forms neutron skin in most of nuclei. A prescription to calculate neutron skin thickness and the slope of symmetry energy parameter LL from the parity violating asymmetry measured in the PREX experiment is proposed.Comment: 12 pages, 5 figures, Presented at XXXII Mazurian Lakes Conference on Physics, Piaski, Poland, September 11-18, 201

    Neutron skin of 208Pb, nuclear symmetry energy, and the parity radius experiment

    Get PDF
    A precise determination of the neutron skin thickness of a heavy nucleus sets a basic constraint on the nuclear symmetry energy (the neutron skin thickness is the difference of the neutron and proton rms radii of the nucleus). The parity radius experiment (PREX) may achieve it by electroweak parity-violating electron scattering (PVES) on 208Pb. We investigate PVES in nuclear mean field approach to allow the accurate extraction of the neutron skin thickness of 208Pb from the parity-violating asymmetry probed in the experiment. We demonstrate a high linear correlation between the parity-violating asymmetry and the neutron skin thickness in successful mean field forces as the best means to constrain the neutron skin of 208Pb from PREX, without assumptions on the neutron density shape. Continuation of the experiment with higher precision in the parity-violating asymmetry is motivated since the present method can support it to constrain the density slope of the nuclear symmetry energy to new accuracy.Comment: 4 pages, 3 figures, some changes in text and references, version to appear in Phys. Rev. Let

    Octupole deformation properties of the Barcelona-Catania-Paris energy density functionals

    Full text link
    We discuss the octupole deformation properties of the recently proposed Barcelona-Catania-Paris (BCP) energy density functionals for two sets of isotopes, those of radium and barium, where it is believed that octupole deformation plays a role in the description of the ground state. The analysis is carried out in the mean field framework (Hartree- Fock- Bogoliubov approximation) by using the axially symmetric octupole moment as a constraint. The main ingredients entering the octupole collective Hamiltonian are evaluated and the lowest lying octupole eigenstates are obtained. In this way we restore, in an approximate way, the parity symmetry spontaneously broken by the mean field and also incorporate octupole fluctuations around the ground state solution. For each isotope the energy of the lowest lying 11^{-}state and the B(E1)B(E1) and B(E3)B(E3) transition probabilities have been computed and compared to both the experimental data and the results obtained in the same framework with the Gogny D1S interaction, which are used here as a well established benchmark. Finally, the octupolarity of the configurations involved in the way down to fission of 240^{240}Pu, which is strongly connected to the asymmetric fragment mass distribution, is studied. We confirm with this thorough study the suitability of the BCP functionals to describe octupole related phenomena.Comment: 13 pages, 13 figure

    Higher-order symmetry energy and neutron star core-crust transition with Gogny forces

    Get PDF
    We study the symmetry energy and the core-crust transition in neutron stars using the finite-range Gogny nuclear interaction and examine the deduced crustal thickness and crustal moment of inertia. We start by analyzing the second-, fourth- and sixth-order coefficients of the Taylor expansion of the energy per particle in powers of the isospin asymmetry for Gogny forces. These coefficients provide information about the departure of the symmetry energy from the widely used parabolic law. The neutron star core-crust transition is evaluated by looking at the onset of thermodynamical instability of the liquid core. The calculation is performed with the exact (i.e., without Taylor expansion) Gogny EoS for the core, and also with its Taylor expansion in order to assess the influence of isospin expansions on locating the inner edge of neutron star crusts. It is found that the properties of the core-crust transition derived from the exact EoS differ from the predictions of the Taylor expansion even when the expansion is carried through sixth order in the isospin asymmetry. Gogny forces, using the exact EoS, predict the ranges 0.094 fm3ρt0.118 fm30.094 \text{ fm}^{-3} \lesssim \rho_t \lesssim 0.118\text{ fm}^{-3} for the transition density and 0.339 MeV fm3Pt0.665 MeV fm30.339 \text{ MeV fm}^{-3} \lesssim P_t \lesssim 0.665 \text{ MeV fm}^{-3} for the transition pressure. The transition densities show an anticorrelation with the slope parameter LL of the symmetry energy. The transition pressures are not found to correlate with LL. Neutron stars obtained with Gogny forces have maximum masses below 1.74M1.74M_\odot and relatively small moments of inertia. The crustal mass and moment of inertia are evaluated and comparisons are made with the constraints from observed glitches in pulsars.Comment: 24 pages, 15 figures, discussions and bibliography updated, to appear in Physical Review

    Accurate nuclear masses from a three parameter Kohn-Sham DFT approach (BCPM)

    Full text link
    Given the promising features of the recently proposed Barcelona-Catania-Paris (BCP) functional \cite{Baldo.08}, it is the purpose of this paper to still improve on it. It is, for instance, shown that the number of open parameters can be reduced from 4-5 to 2-3, i.e. by practically a factor of two. One parameter is tightly fixed by a fine-tuning of the bulk, a second by the surface energy. The third is the strength of the spin-orbit potential on which the final result does not depend within the scatter of the values used in Skyrme and Gogny like functionals. An energy rms value of 1.58 MeV is obtained from a fit of these three parameters to the 579 measured masses reported in the Audi and Waspra 2003 compilation. This rms value compares favorably with the one obtained using other successful mean field theories. Charge radii are also well reproduced when compared with experiment. The energies of some excited states, mostly the isoscalar giant monopole resonances, are studied within this model as well.Comment: 23 pages, 12 figure
    corecore