334 research outputs found
Density dependence of the symmetry energy from neutron skin thickness in finite nuclei
The density dependence of the symmetry energy around saturation density,
characterized by the slope parameter L, is studied using information provided
by the neutron skin thickness in finite nuclei. An estimate for L is obtained
from experimental data on neutron skins extracted from antiprotonic atoms. We
also discuss the ability of parity-violating elastic electron scattering to
obtain information on the neutron skin thickness in 208Pb and to constrain the
density dependence of the nuclear symmetry energy. The size and shape of the
neutron density distribution of 208Pb predicted by mean-field models is briefly
addressed. We conclude with a comparative overview of the L values predicted by
several existing determinations.Comment: 17 pages, 10 figures, submitted to EPJA special volume on Nuclear
Symmetry Energ
Nuclear symmetry energy and neutron skin thickness
The relation between the slope of the nuclear symmetry energy at saturation
density and the neutron skin thickness is investigated. Constraints on the
slope of the symmetry energy are deduced from the neutron skin data obtained in
experiments with antiprotonic atoms. Two types of neutron skin are
distinguished: the "surface" and the "bulk". A combination of both types forms
neutron skin in most of nuclei. A prescription to calculate neutron skin
thickness and the slope of symmetry energy parameter from the parity
violating asymmetry measured in the PREX experiment is proposed.Comment: 12 pages, 5 figures, Presented at XXXII Mazurian Lakes Conference on
Physics, Piaski, Poland, September 11-18, 201
Neutron skin of 208Pb, nuclear symmetry energy, and the parity radius experiment
A precise determination of the neutron skin thickness of a heavy nucleus sets
a basic constraint on the nuclear symmetry energy (the neutron skin thickness
is the difference of the neutron and proton rms radii of the nucleus). The
parity radius experiment (PREX) may achieve it by electroweak parity-violating
electron scattering (PVES) on 208Pb. We investigate PVES in nuclear mean field
approach to allow the accurate extraction of the neutron skin thickness of
208Pb from the parity-violating asymmetry probed in the experiment. We
demonstrate a high linear correlation between the parity-violating asymmetry
and the neutron skin thickness in successful mean field forces as the best
means to constrain the neutron skin of 208Pb from PREX, without assumptions on
the neutron density shape. Continuation of the experiment with higher precision
in the parity-violating asymmetry is motivated since the present method can
support it to constrain the density slope of the nuclear symmetry energy to new
accuracy.Comment: 4 pages, 3 figures, some changes in text and references, version to
appear in Phys. Rev. Let
Octupole deformation properties of the Barcelona-Catania-Paris energy density functionals
We discuss the octupole deformation properties of the recently proposed
Barcelona-Catania-Paris (BCP) energy density functionals for two sets of
isotopes, those of radium and barium, where it is believed that octupole
deformation plays a role in the description of the ground state. The analysis
is carried out in the mean field framework (Hartree- Fock- Bogoliubov
approximation) by using the axially symmetric octupole moment as a constraint.
The main ingredients entering the octupole collective Hamiltonian are evaluated
and the lowest lying octupole eigenstates are obtained. In this way we restore,
in an approximate way, the parity symmetry spontaneously broken by the mean
field and also incorporate octupole fluctuations around the ground state
solution. For each isotope the energy of the lowest lying state and the
and transition probabilities have been computed and compared to
both the experimental data and the results obtained in the same framework with
the Gogny D1S interaction, which are used here as a well established benchmark.
Finally, the octupolarity of the configurations involved in the way down to
fission of Pu, which is strongly connected to the asymmetric fragment
mass distribution, is studied. We confirm with this thorough study the
suitability of the BCP functionals to describe octupole related phenomena.Comment: 13 pages, 13 figure
Higher-order symmetry energy and neutron star core-crust transition with Gogny forces
We study the symmetry energy and the core-crust transition in neutron stars
using the finite-range Gogny nuclear interaction and examine the deduced
crustal thickness and crustal moment of inertia. We start by analyzing the
second-, fourth- and sixth-order coefficients of the Taylor expansion of the
energy per particle in powers of the isospin asymmetry for Gogny forces. These
coefficients provide information about the departure of the symmetry energy
from the widely used parabolic law. The neutron star core-crust transition is
evaluated by looking at the onset of thermodynamical instability of the liquid
core. The calculation is performed with the exact (i.e., without Taylor
expansion) Gogny EoS for the core, and also with its Taylor expansion in order
to assess the influence of isospin expansions on locating the inner edge of
neutron star crusts. It is found that the properties of the core-crust
transition derived from the exact EoS differ from the predictions of the Taylor
expansion even when the expansion is carried through sixth order in the isospin
asymmetry. Gogny forces, using the exact EoS, predict the ranges for the transition
density and for the transition pressure. The transition densities show an
anticorrelation with the slope parameter of the symmetry energy. The
transition pressures are not found to correlate with . Neutron stars
obtained with Gogny forces have maximum masses below and
relatively small moments of inertia. The crustal mass and moment of inertia are
evaluated and comparisons are made with the constraints from observed glitches
in pulsars.Comment: 24 pages, 15 figures, discussions and bibliography updated, to appear
in Physical Review
Accurate nuclear masses from a three parameter Kohn-Sham DFT approach (BCPM)
Given the promising features of the recently proposed Barcelona-Catania-Paris
(BCP) functional \cite{Baldo.08}, it is the purpose of this paper to still
improve on it. It is, for instance, shown that the number of open parameters
can be reduced from 4-5 to 2-3, i.e. by practically a factor of two. One
parameter is tightly fixed by a fine-tuning of the bulk, a second by the
surface energy. The third is the strength of the spin-orbit potential on which
the final result does not depend within the scatter of the values used in
Skyrme and Gogny like functionals. An energy rms value of 1.58 MeV is obtained
from a fit of these three parameters to the 579 measured masses reported in the
Audi and Waspra 2003 compilation. This rms value compares favorably with the
one obtained using other successful mean field theories. Charge radii are also
well reproduced when compared with experiment. The energies of some excited
states, mostly the isoscalar giant monopole resonances, are studied within this
model as well.Comment: 23 pages, 12 figure
- …