10,731 research outputs found
Tail asymptotics of the Brownian signature
The signature of a path \gamma is a sequence whose n-th term is the order-n iterated integrals of \gamma. It arises from solving multidimensional linear differential equations driven by \gamma. We are interested in relating the path properties of \gamma with its signature. If \gamma is C1, then an elegant formula of Hambly and Lyons relates the length of \gamma to the tail asymptotics of the signature.
We show an analogous formula for the multidimensional Brownian motion,with the quadratic variation playing a similar role to the length. In the proof, we study the hyperbolic development of Brownian motion and also
obtain a new subadditive estimate for the asymptotic of signature, which may be of independent interest. As a corollary, we strengthen the existing uniqueness results for the signatures of Brownian motion
Compact Circularly Polarized Patch Antenna Using a Composite Right/Left-Handed Transmission Line Unit-Cell
A compact circularly polarized (CP) patch antenna using a composite right/left-handed (CRLH) transmission line (TL) unit-cell is proposed. The CRLH TL unit-cell includes a complementary split ring resonator (CSRR) for shunt inductance and a gap loaded with a circular-shaped slot for series capacitance. The CSRR can decrease the TM10 mode resonance frequency, thus reducing the electrical size of the proposed antenna. In addition, the asymmetry of the CSRR brings about the TM01 mode, which can be combined with the TM10 mode by changing the slot radius. The combination of these two orthogonal modes with 90° phase shift makes the proposed antenna provide a CP property. The experimental results show that the proposed antenna has a wider axial ratio bandwidth and a smaller electrical size than the reported CP antennas. Moreover, the proposed antenna is designed without impedance transformer, 90° phase shift, dual feed and ground via
High-pressure behavior of dense hydrogen up to 3.5 TPa from density functional theory calculations
Structural behavior and equation of state of atomic and molecular crystal
phases of dense hydrogen at pressures up to 3.5 TPa are systematically
investigated with density functional theory. The results indicate that the
Vinet EOS model that fitted to low-pressure experimental data overestimates the
compressibility of dense hydrogen drastically when beyond 500 GPa. Metastable
multi-atomic molecular phases with weak covalent bonds are observed. When
compressed beyond about 2.8 TPa, these exotic low-coordinated phases become
competitive with the groundstate and other high-symmetry atomic phases. Using
nudged elastic band method, the transition path and the associated energy
barrier between these high-pressure phases are evaluated. In particular for the
case of dissociation of diatomic molecular phase into the atomic metallic Cs-IV
phase, the existent barrier might raise the transition pressure about 200 GPa
at low temperatures. Plenty of flat and broad basins on the energy surface of
dense hydrogen have been discovered, which should take a major responsibility
for the highly anharmonic zero point vibrations of the lattice, as well as the
quantum structure fluctuations in some extreme cases. At zero pressure, our
analysis demonstrates that all of these atomic phases of dense hydrogen known
so far are unquenchable.
NOTE: In the previous version of this paper (1010.3392v1) we made a mistake
when evaluating the enthalpy of Cs-IV phase, which misled us to a conclusion
that taking the multi-atomic molecular phases as the ground-state. After
corrected this error, however, the atomic phase of Cs-IV becomes the static
structure with the lowest enthalpy. Current version not only includes a
substantial improvement of the previous one, but also contains many NEW
interesting topics that were not touched before.Comment: 33 pages, 15 figures, published at J. Appl. Phys. 111, 063510 (2012
Anomalies in non-stoichiometric uranium dioxide induced by pseudo-phase transition of point defects
A uniform distribution of point defects in an otherwise perfect
crystallographic structure usually describes a unique pseudo phase of that
state of a non-stoichiometric material. With off-stoichiometric uranium dioxide
as a prototype, we show that analogous to a conventional phase transition,
these pseudo phases also will transform from one state into another via
changing the predominant defect species when external conditions of pressure,
temperature, or chemical composition are varied. This exotic transition is
numerically observed along shock Hugoniots and isothermal compression curves in
UO2 with first-principles calculations. At low temperatures, it leads to
anomalies (or quasi-discontinuities) in thermodynamic properties and electronic
structures. In particular, the anomaly is pronounced in both shock temperature
and the specific heat at constant pressure. With increasing of the temperature,
however, it transforms gradually to a smooth cross-over, and becomes less
discernible. The underlying physical mechanism and characteristics of this type
of transition are encoded in the Gibbs free energy, and are elucidated clearly
by analyzing the correlation with the variation of defect populations as a
function of pressure and temperature. The opportunities and challenges for a
possible experimental observation of this phase change are also discussed.Comment: 11 pages, 5 figure
Mgb2 Nonlinear Properties Investigated under Localized High RF Magnetic Field Excitation
In order to increase the accelerating gradient of Superconducting Radio
Frequency (SRF) cavities, Magnesium Diboride (MgB2) opens up hope because of
its high transition temperature and potential for low surface resistance in the
high RF field regime. However, due to the presence of the small superconducting
gap in the {\pi} band, the nonlinear response of MgB2 is potentially quite
large compared to a single gap s-wave superconductor (SC) such as Nb.
Understanding the mechanisms of nonlinearity coming from the two-band structure
of MgB2, as well as extrinsic sources, is an urgent requirement. A localized
and strong RF magnetic field, created by a magnetic write head, is integrated
into our nonlinear-Meissner-effect scanning microwave microscope [1]. MgB2
films with thickness 50 nm, fabricated by a hybrid physical-chemical vapor
deposition technique on dielectric substrates, are measured at a fixed location
and show a strongly temperature-dependent third harmonic response. We propose
that at least two mechanisms are responsible for this nonlinear response, one
of which involves vortex nucleation and penetration into the film. [1] T. M.
Tai, X. X. Xi, C. G. Zhuang, D. I. Mircea, S. M. Anlage, "Nonlinear Near-Field
Microwave Microscope for RF Defect Localization in Superconductors", IEEE
Trans. Appl. Supercond. 21, 2615 (2011).Comment: 6 pages, 6 figure
Signature of a spin-up magnetar from multi-band afterglow rebrightening of GRB 100814A
In recent years, more and more gamma-ray bursts with late rebrightenings in
multi-band afterglows unveil the late-time activities of the central engines.
GRB 100814A is a special one among the well-sampled events, with complex
temporal and spectral evolution. The single power-law shallow decay index of
the optical light curve observed by GROND between 640 s and 10 ks is
, which apparently conflicts with the simple
external shock model expectation. Especially, there is a remarkable
rebrightening in the optical to near infrared bands at late time, challenging
the external shock model with synchrotron emission coming from the interaction
of the blast wave with the surrounding interstellar medium. In this paper, we
invoke a magnetar with spin evolution to explain the complex multi-band
afterglow emission of GRB 100814A. The initial shallow decay phase in optical
bands and the plateau in X-ray can be explained as due to energy injection from
a spin-down magnetar. At late time, with the falling of materials from the
fall-back disk onto the central object of the burster, angular momentum of the
accreted materials is transferred to the magnetar, which leads to a spin-up
process. As a result, the magnetic dipole radiation luminosity will increase,
resulting in the significant rebrightening of the optical afterglow. It is
shown that the observed multi-band afterglow emission can be well reproduced by
the model.Comment: 14 pages, 2 figures, accepted by The Astrophysical Journa
CP Violation in Fermion Pair Decays of Neutral Boson Particles
We study CP violation in fermion pair decays of neutral boson particles with
spin 0 or 1. We study a new asymmetry to measure CP violation in decays and discuss the possibility of measuring it
experimentally. For the spin-1 particles case, we study CP violation in the
decays of to octet baryon pairs. We show that these decays can
be used to put stringent constraints on the electric dipole moments of
, and .Comment: 14p, OZ-93/22, UM-93/89, OITS 51
- …
