163,155 research outputs found
Nonparametric IV estimation of shape-invariant Engel curves
This paper concerns the identification and estimation of a shape-invariant Engel
curve system with endogenous total expenditure. The shape-invariant specification
involves a common shift parameter for each demographic group in a pooled
system of Engel curves. Our focus is on the identification and estimation of both
the nonparametric shape of the Engel curve and the parametric specification of the
demographic scaling parameters. We present a new identification condition, closely
related to the concept of bounded completeness in statistics. The estimation procedure
applies the sieve minimum distance estimation of conditional moment restrictions
allowing for endogeneity. We establish a new root mean squared convergence
rate for the nonparametric IV regression when the endogenous regressor has unbounded
support. Root-n asymptotic normality and semiparametric efficiency of
the parametric components are also given under a set of ‘low-level’ sufficient conditions.
Monte Carlo simulations shed lights on the choice of smoothing parameters
and demonstrate that the sieve IV estimator performs well. An application is made
to the estimation of Engel curves using the UK Family Expenditure Survey and
shows the importance of adjusting for endogeneity in terms of both the curvature
and demographic parameters of systems of Engel curves
Semi-nonparametric IV estimation of shape-invariant Engel curves
This paper studies a shape-invariant Engel curve system with endogenous total expenditure, in which the shape-invariant specification involves a common shift parameter for each demographic group in a pooled system of nonparametric Engel curves. We focus on the identification and estimation of both the nonparametric shapes of the Engel curves and the parametric specification of the demographic scaling parameters. The identification condition relates to the bounded completeness and the estimation procedure applies the sieve minimum distance estimation of conditional moment restrictions, allowing for endogeneity. We establish a new root mean squared convergence rate for the nonparametric instrumental variable regression when the endogenous regressor could have unbounded support. Root-n asymptotic normality and semiparametric efficiency of the parametric components are also given under a set of "low-level" sufficient conditions. Our empirical application using the U.K. Family Expenditure Survey shows the importance of adjusting for endogeneity in terms of both the nonparametric curvatures and the demographic parameters of systems of Engel curves
A Lattice Boltzmann method for simulations of liquid-vapor thermal flows
We present a novel lattice Boltzmann method that has a capability of
simulating thermodynamic multiphase flows. This approach is fully
thermodynamically consistent at the macroscopic level. Using this new method, a
liquid-vapor boiling process, including liquid-vapor formation and coalescence
together with a full coupling of temperature, is simulated for the first time.Comment: one gzipped tar file, 19 pages, 4 figure
Image Properties of Embedded Lenses
We give analytic expressions for image properties of objects seen around
point mass lenses embedded in a flat CDM universe. An embedded lens in
an otherwise homogeneous universe offers a more realistic representation of the
lens's gravity field and its associated deflection properties than does the
conventional linear superposition theory. Embedding reduces the range of the
gravitational force acting on passing light beams thus altering all quantities
such as deflection angles, amplifications, shears and Einstein ring sizes.
Embedding also exhibits the explicit effect of the cosmological constant on
these same lensing quantities. In this paper we present these new results and
demonstrate how they can be used. The effects of embedding on image properties,
although small i.e., usually less than a fraction of a percent, have a more
pronounced effect on image distortions in weak lensing where the effects can be
larger than 10%. Embedding also introduces a negative surface mass density for
both weak and strong lensing, a quantity altogether absent in conventional
Schwarzschild lensing. In strong lensing we find only one additional quantity,
the potential part of the time delay, which differs from conventional lensing
by as much as 4%, in agreement with our previous numerical estimates.Comment: 17 pages, 6 figure
Frontiers of parasitology research in the People's Republic of China : infection, diagnosis, protection and surveillance
ABSTRACT: Control and eventual elimination of human parasitic diseases in the People's Republic of China (P.R. China) requires novel approaches, particularly in the areas of diagnostics, mathematical modelling, monitoring, evaluation, surveillance and public health response. A comprehensive effort, involving the collaboration of 188 scientists (<85% from P.R. China) from 48 different institutions and universities (80% from P.R. China), covers this collection of 29 articles published in Parasites & Vectors. The research mainly stems from a research project entitled 'Surveillance and diagnostic tools for major parasitic diseases in P.R. China' (grant no. 2008ZX10004-011) and highlights the frontiers of research in parasitology. The majority of articles in this thematic series deals with the most important parasitic diseases in P.R. China, emphasizing Schistosoma japonicum, Plasmodium vivax and Clonorchis sinensis plus some parasites of emerging importance such as Angiostrongylus cantonensis. Significant achievements have been made through the collaborative research programme in the following three fields: (i) development of control strategies for the national control programme; (ii) updating the surveillance data of parasitic infections both in human and animals; and (iii) improvement of existing, and development of novel, diagnostic tools to detect parasitic infections. The progress is considerable and warrants broad validation efforts. Combined with the development of improved tools for diagnosis and surveillance, integrated and multi-pronged control strategies now pave the way for elimination of parasitic diseases in P.R. China. Experiences and lessons learned can stimulate control and elimination efforts of parasitic diseases in other parts of the world
- …