5,380 research outputs found

    CubeSats as pathfinders for planetary detection: the FIRST-S satellite

    Full text link
    The idea behind FIRST (Fibered Imager foR a Single Telescope) is to use single-mode fibers to combine multiple apertures in a pupil plane as such as to synthesize a bigger aperture. The advantages with respect to a pure imager are i) relaxed tolerance on the pointing and cophasing, ii) higher accuracy in phase measurement, and iii) availability of compact, precise, and active single-mode optics like Lithium Niobate. The latter point being a huge asset in the context of a space mission. One of the problems of DARWIN or SIM-like projects was the difficulty to find low cost pathfinders missions. But the fact that Lithium Niobate optic is small and compact makes it easy to test through small nanosats missions. Moreover, they are commonly used in the telecom industry, and have already been tested on communication satellites. The idea of the FIRST-S demonstrator is to spatialize a 3U CubeSat with a Lithium Niobate nulling interferometer. The technical challenges of the project are: star tracking, beam combination, and nulling capabilities. The optical baseline of the interferometer would be 30 cm, giving a 2.2 AU spatial resolution at distance of 10 pc. The scientific objective of this mission would be to study the visible emission of exozodiacal light in the habitable zone around the closest stars.Comment: SPIE 2014 -- Astronomical telescopes and instrumentation -- Montrea

    Resolving asymmetries along the pulsation cycle of the Mira star X Hya

    Full text link
    The mass-loss process in Mira stars probably occurs in an asymmetric way where dust can form in inhomogeneous circumstellar molecular clumps. Following asymmetries along the pulsation cycle can give us clues about these mass-loss processes. We imaged the Mira star X Hya and its environnement at different epochs to follow the evolution of the morphology in the continuum and in the molecular bands. We observed X Hya with AMBER in J-H-K at low resolution at two epochs. We modelled squared visibilities with geometrical and physical models. We also present imaging reconstruction results obtained with MiRA and based on the physical a priori images. We report on the angular scale change of X Hya between the two epochs. 1D CODEX profiles allowed us to understand and model the spectral variation of squared visibilities and constrain the stellar parameters. Reconstructed model-dependent images enabled us to reproduce closure phase signals and the azimuthal dependence of squared visibilities. They show evidence for material inhomogeneities located in the immediate environment of the star.Comment: Accepted for publication in A&A, 17 pages, 16 figure

    Flares and variability from Sagittarius A*: five nights of simultaneous multi-wavelength observations

    Get PDF
    Aims. We report on simultaneous observations and modeling of mid-infrared (MIR), near-infrared (NIR), and submillimeter (submm) emission of the source Sgr A* associated with the supermassive black hole at the center of our Galaxy. Our goal was to monitor the activity of Sgr A* at different wavelengths in order to constrain the emitting processes and gain insight into the nature of the close environment of Sgr A*. Methods. We used the MIR instrument VISIR in the BURST imaging mode, the adaptive optics assisted NIR camera NACO, and the sub-mm antenna APEX to monitor Sgr A* over several nights in July 2007. Results. The observations reveal remarkable variability in the NIR and sub-mm during the five nights of observation. No source was detected in the MIR, but we derived the lowest upper limit for a flare at 8.59 microns (22.4 mJy with A_8.59mu = 1.6+/- 0.5). This observational constraint makes us discard the observed NIR emission as coming from a thermal component emitting at sub-mm frequencies. Moreover, comparison of the sub-mm and NIR variability shows that the highest NIR fluxes (flares) are coincident with the lowest sub-mm levels of our five-night campaign involving three flares. We explain this behavior by a loss of electrons to the system and/or by a decrease in the magnetic field, as might conceivably occur in scenarios involving fast outflows and/or magnetic reconnection.Comment: 10 pages, 7 figures, published in A&

    Determination of Fluorescence Polarization and Absorption Anisotropy in Molecular Complexes Having Threefold Rotational Symmetry

    Get PDF
    The current work concerns investigation of the polarization properties of complex molecular ensembles exhibiting threefold (C3) rotational symmetry, particularly with regard to the interplay between their structure and dynamics of internal energy transfer. We assume that the molecules or chromophores in such complexes possess strongly overlapped spectra both for absorption and fluorescence. Such trimeric structures are widely found in biological preparations, as for example the trimer of C-phycocyanin (C-PC). Higher order aggregates, e.g. hex-amers and three-hexamer rods, are also investigated and compared with the trimer case. The theory addresses both steady-state and 8-pulse excitation and establishes some links between them. Monochromophoric, bichro-mophoric and trichromophoric molecular complexes are individually examined. For steady-state excitation, analytical formulas are reported for the degree of fluorescence polarization and absorption anisotropy. It is shown that the polarization is dependent on the chromophore inclination relative to the symmetry axis, the relative efficiencies of absorption and fluorescence by chromophores of different spectral types, and the rates of energy equilibration. To assess the validity of the theory, it has been applied to C-PC aggregates. Here it was found that different C-PC aggregates provide practically identical polarization response. For S-pulse excitation we give analytical formulas for determination of the fluorescence depolarization, and also the depolarization associated with absorption recovery, both for a monochromophoric trimer and some particular cases of bichromophoric trimer. More complicated systems are analyzed by computer modeling. Thus it transpires that the initial polarization anisotropy r(t = 0) takes the value 0.4 for all considered aggregates; the long-time limit r(t →∞) has about the same value as is associated with steady-state excitation. We also show that with steady-state excitation the degree of fluorescence polarization is practically equal for various C3 aggregates of C-PC, and that the major factor determining the polarization is the chromophore orientation relative to the symmetry axis

    The close circumstellar environment of Betelgeuse - Adaptive optics spectro-imaging in the near-IR with VLT/NACO

    Get PDF
    Context: Betelgeuse is one the largest stars in the sky in terms of angular diameter. Structures on the stellar photosphere have been detected in the visible and near-infrared as well as a compact molecular environment called the MOLsphere. Mid-infrared observations have revealed the nature of some of the molecules in the MOLsphere, some being the precursor of dust. Aims: Betelgeuse is an excellent candidate to understand the process of mass loss in red supergiants. Using diffraction-limited adaptive optics (AO) in the near-infrared, we probe the photosphere and close environment of Betelgeuse to study the wavelength dependence of its extension, and to search for asymmetries. Methods: We obtained AO images with the VLT/NACO instrument, taking advantage of the "cube" mode of the CONICA camera to record separately a large number of short-exposure frames. This allowed us to adopt a "lucky imaging" approach for the data reduction, and obtain diffraction-limited images over the spectral range 1.04-2.17 Ό\mum in 10 narrow-band filters. Results: In all filters, the photosphere of Betelgeuse appears partly resolved. We identify an asymmetric envelope around the star, with in particular a relatively bright "plume" extending in the southwestern quadrant up to a radius of approximately six times the photosphere. The CN molecule provides an excellent match to the 1.09 mic bandhead in absorption in front of the stellar photosphere, but the emission spectrum of the plume is more difficult to interpret. Conclusions: Our AO images show that the envelope surrounding Betelgeuse has a complex and irregular structure. We propose that the southwestern plume is linked either to the presence of a convective hot spot on the photosphere, or to the rotation of the star.Comment: 12 pages. Astronomy and Astrophysics (2009) in pres

    Imaging the spotty surface of Betelgeuse in the H band

    Full text link
    This paper reports on H-band interferometric observations of Betelgeuse made at the three-telescope interferometer IOTA. We image Betelgeuse and its asymmetries to understand the spatial variation of the photosphere, including its diameter, limb darkening, effective temperature, surrounding brightness, and bright (or dark) star spots. We used different theoretical simulations of the photosphere and dusty environment to model the visibility data. We made images with parametric modeling and two image reconstruction algorithms: MIRA and WISARD. We measure an average limb-darkened diameter of 44.28 +/- 0.15 mas with linear and quadratic models and a Rosseland diameter of 45.03 +/- 0.12 mas with a MARCS model. These measurements lead us to derive an updated effective temperature of 3600 +/- 66 K. We detect a fully-resolved environment to which the silicate dust shell is likely to contribute. By using two imaging reconstruction algorithms, we unveiled two bright spots on the surface of Betelgeuse. One spot has a diameter of about 11 mas and accounts for about 8.5% of the total flux. The second one is unresolved (diameter < 9 mas) with 4.5% of the total flux. Resolved images of Betelgeuse in the H band are asymmetric at the level of a few percent. The MOLsphere is not detected in this wavelength range. The amount of measured limb-darkening is in good agreement with model predictions. The two spots imaged at the surface of the star are potential signatures of convective cells.Comment: 10 pages, 10 figures, accepted for publication in A&A, references adde

    Radiative hydrodynamics simulations of red supergiant stars: II. simulations of convection on Betelgeuse match interferometric observations

    Full text link
    Context. The red supergiant (RSG) Betelgeuse is an irregular variable star. Convection may play an important role in understanding this variability. Interferometric observations can be interpreted using sophisticated simulations of stellar convection. Aims. We compare the visibility curves and closure phases obtained from our 3D simulation of RSG convection with CO5BOLD to various interferometric observations of Betelgeuse from the optical to the H band in order to characterize and measure the convection pattern on this star. Methods. We use 3D radiative-hydrodynamics (RHD) simulation to compute intensity maps in different filters and we thus derive interferometric observables using the post-processing radiative transfer code OPTIM3D. The synthetic visibility curves and closure phases are compared to observations. Results. We provide a robust detection of the granulation pattern on the surface of Betelgeuse in the optical and in the H band based on excellent fits to the observed visibility points and closure phases. Moreover, we determine that the Betelgeuse surface in the H band is covered by small to medium scale (5-15 mas) convection-related surface structures and a large (30 mas) convective cell. In this spectral region, H2O molecules are the main absorbers and contribute to the small structures and to the position of the first null of the visibility curve (i.e. the apparent stellar radius).Comment: 11 pages, Accepted for publication on A&

    GCIRS 7, a pulsating M1 supergiant at the Galactic centre. Physical properties and age

    Full text link
    The stellar population in the central parsec of the Galaxy is dominated by an old (several Gyr) population, but young, massive stars dominate the luminosity function. We have studied the most luminous of these stars, GCIRS 7, in order to constrain the age of the recent star formation event in the Galactic Centre and to characterise it as an interferometric reference for observations of the Galactic Centre with the instrument GRAVITY, which will equip the Very Large Telescope Interferometer in the near future. We present the first H-band interferometric observations of GCIRS 7, obtained using the PIONIER visitor instrument on the VLTI using the four 8.2-m unit telescopes. In addition, we present unpublished K-band VLTI/AMBER data, build JHKL light-curves based on data spanning 4 decades, and measured the star's effective temperature using SINFONI spectroscopy. GCIRS 7 is marginally resolved at H-band (in 2013: uniform-disk diameter=1.076+/-0.093mas, R=960+/-92Rsun at 8.33+/-0.35kpc). We detect a significant circumstellar contribution at K-band. The star and its environment are variable in brightness and in size. The photospheric H-band variations are well modelled with two periods: P0~470+/-10 days (amplitude ~0.64mag) and long secondary period LSP~2700-2850 days (~1.1mag). As measured from CO equivalent width, =3600+/-195K. The size, periods, luminosity (=-8.44+/-0.22) and effective temperature are consistent with an M1 supergiant with an initial mass of 22.5+/-2.5Msun and an age of 6.5-10Myr (depending on rotation). This age is in remarkable agreement with most estimates for the recent star formation event in the central parsec. Caution should be taken when using this star as an interferometric reference as it is variable in size, is surrounded by a variable circumstellar environment and large convection cells may form on its photosphere.Comment: Accepted for publication in A&A. 10 pages, 12 figure
    • 

    corecore