28,553 research outputs found

    Fractional Quantum Hall Effect in Suspended Graphene: Transport Coefficients and Electron Interaction Strength

    Full text link
    Strongly correlated electron liquids which occur in quantizing magnetic fields reveal a cornucopia of fascinating quantum phenomena such as fractionally charged quasiparticles, anyonic statistics, topological order, and many others. Probing these effects in GaAs-based systems, where electron interactions are relatively weak, requires sub-kelvin temperatures and record-high electron mobilities, rendering some of the most interesting states too fragile and difficult to access. This prompted a quest for new high-mobility systems with stronger electron interactions. Recently, fractional-quantized Hall effect was observed in suspended graphene (SG), a free-standing monolayer of carbon, where it was found to persist up to T=10 K. The best results in those experiments were obtained on micron-size flakes, on which only two-terminal transport measurements could be performed. Here we pose and solve the problem of extracting transport coefficients of a fractional quantum Hall state from the two-terminal conductance. We develop a method, based on the conformal invariance of two-dimensional magnetotransport, and illustrate its use by analyzing the measurements on SG. From the temperature dependence of longitudinal conductivity, extracted from the measured two-terminal conductance, we estimate the energy gap of quasiparticle excitations in the fractional-quantized nu=1/3 state. The gap is found to be significantly larger than in GaAs-based structures, signaling much stronger electron interactions in suspended graphene. Our approach provides a new tool for the studies of quantum transport in suspended graphene and other nanoscale systems

    Testing mechanisms of compensatory fitness of dioecy in a cosexual world

    Get PDF
    Questions: All else being equal, populations of dioecious species with a 50:50 sex ratio have only half the effective reproductive population size of bisexual species of equal abundance. Consequently, there is a need to explain how dioecious and bisexual species coexist. Increased mean individual seed mass, fecundity, and population density have all been proposed as attributes of unisexual individuals or populations that may contribute to the persistence or resilience of dioecious species. To date, no studies have compared sympatric dioecious and cosexual species with respect to all three components of fitness. In this study, we sought evidence for these compensatory advantages (higher seed mass, greater seed production per unit basal area, and higher population density) in dioecious species. Location: Five 20–25 ha forest dynamic plots spanning a latitudinal gradient in China, including two temperate, two subtropical, and one tropical forest. Methods: We used a phylogenetically corrected generalized linear modelling approach to assess the phylogenetic dependence and joint evolution of sexual system, seed mass and production, and ecological abundances among 48–333 species and 32,568–136,237 individuals per forest. Results: Across all five forests, we detected no consistent advantage for dioecious relative to sympatric cosexual species with respect to mean individual seed mass, seed production or the density of stems in any size class. Conclusions: Our study suggests that seed traits may provide compensatory mechanisms in some forests, but most often the coexistence of sexual systems cannot be explained by advantages of dioecy related to seed quality and demographic parameters. Future investigations of the factors that promote coexistence may increase our understanding by expanding the search to include attributes such as lifespan and tolerance or resistance to herbivores

    Rotating system for four-dimensional transverse rms-emittance measurements

    Full text link
    Knowledge of the transverse four-dimensional beam rms-parameters is essential for applications that involve lattice elements that couple the two transverse degrees of freedom (planes). Of special interest is the removal of inter-plane correlations to reduce the projected emittances. A dedicated ROtating System for Emittance measurements (ROSE) has been proposed, developed, and successfully commissioned to fully determine the four-dimensional beam matrix. This device has been used at the High Charge injector (HLI) at GSI using a beam line which is composed of a skew quadrupole triplet, a normal quadrupole doublet, and ROSE. Mathematical algorithms, measurements, and results for ion beams of 83Kr13+ at 1.4 MeV/u are reported in this paper.Comment: 11 pages, 10 figure

    On the Approximability and Hardness of the Minimum Connected Dominating Set with Routing Cost Constraint

    Full text link
    In the problem of minimum connected dominating set with routing cost constraint, we are given a graph G=(V,E)G=(V,E), and the goal is to find the smallest connected dominating set DD of GG such that, for any two non-adjacent vertices uu and vv in GG, the number of internal nodes on the shortest path between uu and vv in the subgraph of GG induced by D{u,v}D \cup \{u,v\} is at most α\alpha times that in GG. For general graphs, the only known previous approximability result is an O(logn)O(\log n)-approximation algorithm (n=Vn=|V|) for α=1\alpha = 1 by Ding et al. For any constant α>1\alpha > 1, we give an O(n11α(logn)1α)O(n^{1-\frac{1}{\alpha}}(\log n)^{\frac{1}{\alpha}})-approximation algorithm. When α5\alpha \geq 5, we give an O(nlogn)O(\sqrt{n}\log n)-approximation algorithm. Finally, we prove that, when α=2\alpha =2, unless NPDTIME(npolylogn)NP \subseteq DTIME(n^{poly\log n}), for any constant ϵ>0\epsilon > 0, the problem admits no polynomial-time 2log1ϵn2^{\log^{1-\epsilon}n}-approximation algorithm, improving upon the Ω(logn)\Omega(\log n) bound by Du et al. (albeit under a stronger hardness assumption)

    Computation Offloading and Resource Allocation in Mixed Fog/Cloud Computing Systems with Min-Max Fairness Guarantee

    Get PDF
    Cooperation between the fog and the cloud in mobile cloud computing environments could offer improved offloading services to smart mobile user equipment (UE) with computation intensive tasks. In this paper, we tackle the computation offloading problem in a mixed fog/cloud system by jointly optimizing the offloading decisions and the allocation of computation resource, transmit power and radio bandwidth, while guaranteeing user fairness and maximum tolerable delay. This optimization problem is formulated to minimize the maximal weighted cost of delay and energy consumption (EC) among all UEs, which is a mixed-integer non-linear programming problem. Due to the NP-hardness of the problem, we propose a low-complexity suboptimal algorithm to solve it, where the offloading decisions are obtained via semidefinite relaxation and randomization and the resource allocation is obtained using fractional programming theory and Lagrangian dual decomposition. Simulation results are presented to verify the convergence performance of our proposed algorithms and their achieved fairness among UEs, and the performance gains in terms of delay, EC and the number of beneficial UEs over existing algorithms
    corecore