82 research outputs found
Generation of Porous Particle Structures using the Void Expansion Method
The newly developed "void expansion method" allows for an efficient
generation of porous packings of spherical particles over a wide range of
volume fractions using the discrete element method. Particles are randomly
placed under addition of much smaller "void-particles". Then, the void-particle
radius is increased repeatedly, thereby rearranging the structural particles
until formation of a dense particle packing.
The structural particles' mean coordination number was used to characterize
the evolving microstructures. At some void radius, a transition from an
initially low to a higher mean coordination number is found, which was used to
characterize the influence of the various simulation parameters. For structural
and void-particle stiffnesses of the same order of magnitude, the transition is
found at constant total volume fraction slightly below the random close packing
limit. For decreasing void-particle stiffness the transition is shifted towards
a smaller void-particle radius and becomes smoother.Comment: 9 pages, 8 figure
The Influence of the Degree of Heterogeneity on the Elastic Properties of Random Sphere Packings
The macroscopic mechanical properties of colloidal particle gels strongly
depend on the local arrangement of the powder particles. Experiments have shown
that more heterogeneous microstructures exhibit up to one order of magnitude
higher elastic properties than their more homogeneous counterparts at equal
volume fraction. In this paper, packings of spherical particles are used as
model structures to computationally investigate the elastic properties of
coagulated particle gels as a function of their degree of heterogeneity. The
discrete element model comprises a linear elastic contact law, particle bonding
and damping. The simulation parameters were calibrated using a homogeneous and
a heterogeneous microstructure originating from earlier Brownian dynamics
simulations. A systematic study of the elastic properties as a function of the
degree of heterogeneity was performed using two sets of microstructures
obtained from Brownian dynamics simulation and from the void expansion method.
Both sets cover a broad and to a large extent overlapping range of degrees of
heterogeneity. The simulations have shown that the elastic properties as a
function of the degree of heterogeneity are independent of the structure
generation algorithm and that the relation between the shear modulus and the
degree of heterogeneity can be well described by a power law. This suggests the
presence of a critical degree of heterogeneity and, therefore, a phase
transition between a phase with finite and one with zero elastic properties.Comment: 8 pages, 6 figures; Granular Matter (published online: 11. February
2012
Mesoscale characterization of supramolecular transient networks using SAXS and Rheology
Abstract: Hydrogels and, in particular, supramolecular hydrogels show promising properties for application in regenerative medicine because of their ability to adapt to the natural environment these materials are brought into. However, only few studies focus on the structure-property relationships in supramolecular hydrogels. Here, we study in detail both the structure and the mechanical properties of such a network, composed of poly(ethylene glycol), end-functionalized with ureido-pyrimidinone fourfold hydrogen bonding units. This network is responsive to triggers such as concentration, temperature and pH. To obtain more insight into the sol-gel transition of the system, both rheology and small-angle X-ray scattering (SAXS) are used. We show that the sol-gel transitions based on these three triggers, as measured by rheology, coincide with the appearance of a structural feature in SAXS. We attribute this feature to the presence of hydrophobic domains where cross-links are formed. These results provide more insight into the mechanism of network formation in these materials, which can be exploited for tailoring their behavior for biomedical applications, where one of the triggers discussed might be used
A New Polymeric Minimally Invasive Glaucoma Implant
Glaucoma drainage devices are implanted in the eye to treat glaucoma, a disease that can cause vision loss and blindness. These devices are designed to reduce intraocular pressure (IOP), a major risk factor for the progression of glaucoma, by providing an alternative outflow path for the fluid produced by the eye, the aqueous humor. Here, a novel polymeric minimally invasive glaucoma implant designed to enhance aqueous humor outflow is demonstrated. The implant is made of a unique, potentially biodegradable thermoplastic material, polycarbonate bisamide (PC-BA), and produced through replica molding using hot embossing and femtosecond laser-machined glass molds. Post-mortem experiments demonstrate successful device implantation into a rabbit's eye, with the implant remaining securely in place. Although the mass loss and changes in molecular weight observed in the in vitro degradation experiments are not significant within the tested times and degradation conditions, the PC-BA is a slow-degradation polymer that may take a few years to fully degrade. Thus, the implant will also slowly degrade and be absorbed by the body over time, leaving behind a natural outflow pathway. This potentially biodegradable glaucoma implant may represent a promising new approach for restoring outflow in a more natural way.</p
A direct numerical simulation method for complex modulus of particle dispersions
We report an extension of the smoothed profile method (SPM)[Y. Nakayama, K.
Kim, and R. Yamamoto, Eur. Phys. J. E {\bf 26}, 361(2008)], a direct numerical
simulation method for calculating the complex modulus of the dispersion of
particles, in which we introduce a temporally oscillatory external force into
the system. The validity of the method was examined by evaluating the storage
and loss moduli of a system composed of identical
spherical particles dispersed in an incompressible Newtonian host fluid at
volume fractions of , 0.41, and 0.51. The moduli were evaluated at
several frequencies of shear flow; the shear flow used here has a zigzag
profile, as is consistent with the usual periodic boundary conditions
Mechanical Responses and Stress Fluctuations of a Supercooled Liquid in a Sheared Non-Equilibrium State
A steady shear flow can drive supercooled liquids into a non-equilibrium
state. Using molecular dynamics simulations under steady shear flow
superimposed with oscillatory shear strain for a probe, non-equilibrium
mechanical responses are studied for a model supercooled liquid composed of
binary soft spheres. We found that even in the strongly sheared situation, the
supercooled liquid exhibits surprisingly isotropic responses to oscillating
shear strains applied in three different components of the strain tensor. Based
on this isotropic feature, we successfully constructed a simple two-mode
Maxwell model that can capture the key features of the storage and loss moduli,
even for highly non-equilibrium state. Furthermore, we examined the correlation
functions of the shear stress fluctuations, which also exhibit isotropic
relaxation behaviors in the sheared non-equilibrium situation. In contrast to
the isotropic features, the supercooled liquid additionally demonstrates
anisotropies in both its responses and its correlations to the shear stress
fluctuations. Using the constitutive equation (a two-mode Maxwell model), we
demonstrated that the anisotropic responses are caused by the coupling between
the oscillating strain and the driving shear flow. We measured the magnitude of
this violation in terms of the effective temperature. It was demonstrated that
the effective temperature is notably different between different components,
which indicates that a simple scalar mapping, such as the concept of an
effective temperature, oversimplifies the true nature of supercooled liquids
under shear flow. An understanding of the mechanism of isotropies and
anisotropies in the responses and fluctuations will lead to a better
appreciation of these violations of the FDT, as well as certain consequent
modifications to the concept of an effective temperature.Comment: 15pages, 17figure
Multiethnic meta-analysis identifies ancestry-specific and cross-ancestry loci for pulmonary function
Nearly 100 loci have been identified for pulmonary function, almost exclusively in studies of European ancestry populations. We extend previous research by meta-analyzing genome-wide association studies of 1000 Genomes imputed variants in relation to pulmonary function in a multiethnic population of 90,715 individuals of European (N = 60,552), African (N = 8429), Asian (N = 9959), and Hispanic/Latino (N = 11,775) ethnicities. We identify over 50 additional loci at genome-wide significance in ancestry-specific or multiethnic meta-analyses. Using recent fine-mapping methods incorporating functional annotation, gene expression, and differences in linkage disequilibrium between ethnicities, we further shed light on potential causal variants and genes at known and newly identified loci. Several of the novel genes encode proteins with predicted or established drug targets, including KCNK2 and CDK12. Our study highlights the utility of multiethnic and integrative genomics approaches to extend existing knowledge of the genetics of l
- …