4 research outputs found

    New distances to RAVE stars

    Get PDF
    Probability density functions are determined from new stellar parameters for the distance moduli of stars for which the RAdial Velocity Experiment (RAVE) has obtained spectra with S/N>=10. Single-Gaussian fits to the pdf in distance modulus suffice for roughly half the stars, with most of the other half having satisfactory two-Gaussian representations. As expected, early-type stars rarely require more than one Gaussian. The expectation value of distance is larger than the distance implied by the expectation of distance modulus; the latter is itself larger than the distance implied by the expectation value of the parallax. Our parallaxes of Hipparcos stars agree well with the values measured by Hipparcos, so the expectation of parallax is the most reliable distance indicator. The latter are improved by taking extinction into account. The effective temperature absolute-magnitude diagram of our stars is significantly improved when these pdfs are used to make the diagram. We use the method of kinematic corrections devised by Schoenrich, Binney & Asplund to check for systematic errors for general stars and confirm that the most reliable distance indicator is the expectation of parallax. For cool dwarfs and low-gravity giants tends to be larger than the true distance by up to 30 percent. The most satisfactory distances are for dwarfs hotter than 5500 K. We compare our distances to stars in 13 open clusters with cluster distances from the literature and find excellent agreement for the dwarfs and indications that we are over-estimating distances to giants, especially in young clusters.Comment: 20 pages accepted by MNRAS. Minor changes to the submitted versio

    Progress with the Prime Focus Spectrograph for the Subaru Telescope: a massively multiplexed optical and near-infrared fiber spectrograph

    Full text link
    The Prime Focus Spectrograph (PFS) is an optical/near-infrared multi-fiber spectrograph with 2394 science fibers, which are distributed in 1.3 degree diameter field of view at Subaru 8.2-meter telescope. The simultaneous wide wavelength coverage from 0.38 um to 1.26 um, with the resolving power of 3000, strengthens its ability to target three main survey programs: cosmology, Galactic archaeology, and galaxy/AGN evolution. A medium resolution mode with resolving power of 5000 for 0.71 um to 0.89 um also will be available by simply exchanging dispersers. PFS takes the role for the spectroscopic part of the Subaru Measurement of Images and Redshifts project, while Hyper Suprime-Cam works on the imaging part. To transform the telescope plus WFC focal ratio, a 3-mm thick broad-band coated glass-molded microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of cable system, while one with a better FRD performance is selected for the fiber-positioner and fiber-slit components, given the more frequent fiber movements and tightly curved structure. Each Fiber positioner consists of two stages of piezo-electric rotary motors. Its engineering model has been produced and tested. Fiber positioning will be performed iteratively by taking an image of artificially back-illuminated fibers with the Metrology camera located in the Cassegrain container. The camera is carefully designed so that fiber position measurements are unaffected by small amounts of high special-frequency inaccuracies in WFC lens surface shapes. Target light carried through the fiber system reaches one of four identical fast-Schmidt spectrograph modules, each with three arms. Prototype VPH gratings have been optically tested. CCD production is complete, with standard fully-depleted CCDs for red arms and more-challenging thinner fully-depleted CCDs with blue-optimized coating for blue arms.Comment: 14 pages, 12 figures, submitted to "Ground-based and Airborne Instrumentation for Astronomy V, Suzanne K. Ramsay, Ian S. McLean, Hideki Takami, Editors, Proc. SPIE 9147 (2014)

    Critical science for the largest telescopes: science drivers for a 100m ground-based optical-IR telescope

    No full text
    Extremely large filled-aperture ground-based optical-IR telescopes, or ELTs, ranging from 20 to 100m in diameter, are now being proposed. The all-important choice of the aperture must clearly be driven by the potential science offered. We here highlight science goals from the Leiden Workshop in May 2001 suggesting that for certain critical observations the largest possible aperture - assumed to be 100m (theproposed European OverWhelmingly Large telescope (OWL) - is strongly tobe desired. Examples from a long list include: COSMOLOGY: Identifying the first sources of ionisation in the universe, out to z >=14 Identifying and studying the first generation of dusty galaxies More speculatively, observing the formation of the laws of physics, via the evolution of the fundamental physical contants in the very early Universe, by high-resolution spectroscopy of very distant quasars. NEARER GALAXIES: Determining detailed star-formation histories of galaxies out to the Virtgo Cluster, and hence for all major galaxy types (not just those available close to the Local Group of galaxies). THE SOLAR SYSTEM: A 100-m telescope would do the work of a flotilla of fly-by space probes for investigations ranging from the evolution ofplanetary sutfaces and atmospheres to detailed surface spectroscopy of Kuiper Belt Objects. (Such studies could easily occupy it full-time.) EARTHLIKE PLANETS OF NEARBY STARS: A prospect so exciting as perhaps to justify the 100-m telescope on its own, is that of the direct detectionof earthlike planets of solar-type stars by imaging, out to at least 25 parsecs (80 light years) from the sun, followed by spectroscopic and photometric searches for the signature of life on the surfaces of nearer examples
    corecore