9 research outputs found

    Weighing the local dark matter with RAVE red clump stars

    Get PDF
    We determine the Galactic potential in the solar neigbourhood from RAVE observations. We select red clump stars for which accurate distances, radial velocities, and metallicities have been measured. Combined with data from the 2MASS and UCAC catalogues, we build a sample of 4600 red clump stars within a cylinder of 500 pc radius oriented in the direction of the South Galactic Pole, in the range of 200 pc to 2000 pc distances. We deduce the vertical force and the total mass density distribution up to 2 kpc away from the Galactic plane by fitting a distribution function depending explicitly on three isolating integrals of the motion in a separable potential locally representing the Galactic one with four free parameters. Because of the deep extension of our sample, we can determine nearly independently the dark matter mass density and the baryonic disc surface mass density. We find (i) at 1kpc Kz/(2piG) = 68.5 pm 1.0 Msun/pc2, and (ii) at 2 kpc Kz/(2piG) = 96.9 pm 2.2 Msun/pc2. Assuming the solar Galactic radius at R0 = 8.5 kpc, we deduce the local dark matter density rhoDM (z=0) = 0.0143 pm 0.0011Msun pc3 = 0.542 pm 0.042 Gev/cm3 and the baryonic surface mass density Sigma = 44.4 pm 4.1 Msun/pc2 . Our results are in agreement with previously published Kz determinations up to 1 kpc, while the extension to 2 kpc shows some evidence for an unexpectedly large amount of dark matter. A flattening of the dark halo of order 0.8 can produce such a high local density in combination with a circular velocity of 240 km/s . Another explanation, allowing for a lower circular velocity, could be the presence of a secondary dark component, a very thick disc resulting either from the deposit of dark matter from the accretion of multiple small dwarf galaxies, or from the presence of an effective phantom thick disc in the context of effective galactic-scale modifications of gravity.Comment: 14 pages, 13 figures, accepted to Astronomy and Astrophysic

    Chemical gradients in the Milky Way from the RAVE data. II. Giant stars

    Get PDF
    We provide new constraints on the chemo-dynamical models of the Milky Way by measuring the radial and vertical chemical gradients for the elements Mg, Al, Si, Ti, and Fe in the Galactic disc and the gradient variations as a function of the distance from the Galactic plane (ZZ). We selected a sample of giant stars from the RAVE database using the gravity criterium 1.7<<log g<<2.8. We created a RAVE mock sample with the Galaxia code based on the Besan\c con model and selected a corresponding mock sample to compare the model with the observed data. We measured the radial gradients and the vertical gradients as a function of the distance from the Galactic plane ZZ to study their variation across the Galactic disc. The RAVE sample exhibits a negative radial gradient of d[Fe/H]/dR=0.054d[Fe/H]/dR=-0.054 dex kpc1^{-1} close to the Galactic plane (Z<0.4|Z|<0.4 kpc) that becomes flatter for larger Z|Z|. Other elements follow the same trend although with some variations from element to element. The mock sample has radial gradients in fair agreement with the observed data. The variation of the gradients with ZZ shows that the Fe radial gradient of the RAVE sample has little change in the range Z0.6|Z|\lesssim0.6 kpc and then flattens. The iron vertical gradient of the RAVE sample is slightly negative close to the Galactic plane and steepens with Z|Z|. The mock sample exhibits an iron vertical gradient that is always steeper than the RAVE sample. The mock sample also shows an excess of metal-poor stars in the [Fe/H] distributions with respect to the observed data. These discrepancies can be reduced by decreasing the number of thick disc stars and increasing their average metallicity in the Besan\c con model.Comment: 13 pages, 9 figures, 5 tables, A&A accepte

    The RAVE survey: the Galactic escape speed and the mass of the Milky Way

    Get PDF
    We construct new estimates on the Galactic escape speed at various Galactocentric radii using the latest data release of the Radial Velocity Experiment (RAVE DR4). Compared to previous studies we have a database larger by a factor of 10 as well as reliable distance estimates for almost all stars. Our analysis is based on the statistical analysis of a rigorously selected sample of 90 high-velocity halo stars from RAVE and a previously published data set. We calibrate and extensively test our method using a suite of cosmological simulations of the formation of Milky Way-sized galaxies. Our best estimate of the local Galactic escape speed, which we define as the minimum speed required to reach three virial radii R340R_{340}, is 53341+54533^{+54}_{-41} km/s (90% confidence) with an additional 5% systematic uncertainty, where R340R_{340} is the Galactocentric radius encompassing a mean over-density of 340 times the critical density for closure in the Universe. From the escape speed we further derive estimates of the mass of the Galaxy using a simple mass model with two options for the mass profile of the dark matter halo: an unaltered and an adiabatically contracted Navarro, Frenk & White (NFW) sphere. If we fix the local circular velocity the latter profile yields a significantly higher mass than the un-contracted halo, but if we instead use the statistics on halo concentration parameters in large cosmological simulations as a constraint we find very similar masses for both models. Our best estimate for M340M_{340}, the mass interior to R340R_{340} (dark matter and baryons), is 1.30.3+0.4×10121.3^{+0.4}_{-0.3} \times 10^{12} M_\odot (corresponding to M200=1.60.4+0.5×1012M_{200} = 1.6^{+0.5}_{-0.4} \times 10^{12} M_\odot). This estimate is in good agreement with recently published independent mass estimates based on the kinematics of more distant halo stars and the satellite galaxy Leo I.Comment: 16 pages, 15 figures; accepted for publication in Astronomy & Astrophysic

    Kinematic modelling of the Milky Way using the RAVE and GCS stellar surveys

    Get PDF
    We investigate the kinematic parameters of the Milky Way disc using the RAVE and GCS stellar surveys. We do this by fitting a kinematic model to the data taking the selection function of the data into account. For stars in the GCS we use all phase-space coordinates, but for RAVE stars we use only (l,b,vlos)(l,b,v_{\rm los}). Using MCMC technique, we investigate the full posterior distributions of the parameters given the data. We investigate the `age-velocity dispersion' relation for the three kinematic components (σR,σϕ,σz\sigma_R,\sigma_{\phi},\sigma_z), the radial dependence of the velocity dispersions, the Solar peculiar motion (U,V,WU_{\odot},V_{\odot}, W_{\odot} ), the circular speed Θ0\Theta_0 at the Sun and the fall of mean azimuthal motion with height above the mid-plane. We confirm that the Besan\c{c}on-style Gaussian model accurately fits the GCS data, but fails to match the details of the more spatially extended RAVE survey. In particular, the Shu distribution function (DF) handles non-circular orbits more accurately and provides a better fit to the kinematic data. The Gaussian distribution function not only fits the data poorly but systematically underestimates the fall of velocity dispersion with radius. We find that correlations exist between a number of parameters, which highlights the importance of doing joint fits. The large size of the RAVE survey, allows us to get precise values for most parameters. However, large systematic uncertainties remain, especially in VV_{\odot} and Θ0\Theta_0. We find that, for an extended sample of stars, Θ0\Theta_0 is underestimated by as much as 10%10\% if the vertical dependence of the mean azimuthal motion is neglected. Using a simple model for vertical dependence of kinematics, we find that it is possible to match the Sgr A* proper motion without any need for VV_{\odot} being larger than that estimated locally by surveys like GCS.Comment: 27 pages, 13 figures, accepted for publication in Ap

    APASS Landolt-Sloan BVgri photometry of RAVE stars. I. Data, effective temperatures and reddenings

    Get PDF
    We provide APASS photometry in the Landolt BV and Sloan g'r'i' bands for all the 425,743 stars included in the latest 4th RAVE Data Release. The internal accuracy of the APASS photometry of RAVE stars, expressed as error of the mean of data obtained and separately calibrated over a median of 4 distinct observing epochs and distributed between 2009 and 2013, is 0.013, 0.012, 0.012, 0.014 and 0.021 mag for B, V, g', r' and i' band, respectively. The equally high external accuracy of APASS photometry has been verified on secondary Landolt and Sloan photometric standard stars not involved in the APASS calibration process, and on a large body of literature data on field and cluster stars, confirming the absence of offsets and trends. Compared with the Carlsberg Meridian Catalog (CMC-15), APASS astrometry of RAVE stars is accurate to a median value of 0.098 arcsec. Brightness distribution functions for the RAVE stars have been derived in all bands. APASS photometry of RAVE stars, augmented by 2MASS JHK infrared data, has been chi2 fitted to a densely populated synthetic photometric library designed to widely explore in temperature, surface gravity, metallicity and reddening. Resulting Teff and E(B-V), computed over a range of options, are provided and discussed, and will be kept updated in response to future APASS and RAVE data releases. In the process it is found that the reddening caused by an homogeneous slab of dust, extending for 140 pc on either side of the Galactic plane and responsible for E(B-V,poles)=0.036 +/- 0.002 at the galactic poles, is a suitable approximation of the actual reddening encountered at Galactic latitudes |b|>=25 deg.Comment: Astronomical Journal, in press. Resolution of Figures degrated to match arXiv file size limit

    The rich are different: evidence from the RAVE survey for stellar radial migration

    Get PDF
    Using the RAdial Velocity Experiment fourth data release (RAVE DR4), and a new metallicity calibration that will be also taken into account in the future RAVE DR5, we investigate the existence and the properties of super-solar metallicity stars ([M/H] ≳ +0.1dex) in the sample, and in particular in the Solar neighbourhood. We find that RAVE is rich in super-solar metallicity stars, and that the local metallicity distribution function declines remarkably slowly up to +0.4dex. Our results show that the kinematics and height distributions of the super-solar metallicity stars are identical to those of the [M/H] ≲ 0 thin-disc giants that we presume were locally manufactured. The eccentricities of the super-solar metallicity stars indicate that half of them are on a roughly circular orbit (e ≤ 0.15), so under the assumption that the metallicity of the interstellar medium at a given radius never decreases with time, they must have increased their angular momenta by scattering at corotation resonances of spiral arms from regions far inside the Solar annulus. The likelihood that a star will migrate radially does not seem to decrease significantly with increasing amplitude of vertical oscillations within range of oscillation amplitudes encountered in the disc

    A NEW STELLAR CHEMO-KINEMATIC RELATION REVEALS THE MERGER HISTORY OF THE MILKY WAY DISK

    Get PDF
    The velocity dispersions of stars near the Sun are known to increase with stellar age, but age can be difficult to determine, so a proxy like the abundance of alpha elements (e. g., Mg) with respect to iron, [alpha/Fe], is used. Here we report an unexpected behavior found in the velocity dispersion of a sample of giant stars from the Radial Velocity Experiment survey with high-quality chemical and kinematic information, in that it decreases strongly for stars with [Mg/Fe] > 0.4 dex (i.e., those that formed in the first gigayear of the Galaxy's life). These findings can be explained by perturbations from massive mergers in the early universe, which have affected the outer parts of the disk more strongly, and the subsequent radial migration of stars with cooler kinematics from the inner disk. Similar reversed trends in velocity dispersion are also found for different metallicity subpopulations. Our results suggest that the Milky Way disk merger history can be recovered by relating the observed chemo-kinematic relations to the properties of past merger events

    The RR-Process Alliance: Fourth Data Release from the Search for rr-Process-Enhanced Stars in the Galactic Halo

    No full text
    International audienceThis compilation is the fourth data release from the R-Process Alliance (RPA) search for r-process-enhanced stars and the second release based on “snapshot” high-resolution (R ∼ 30,000) spectra collected with the du Pont 2.5 m Telescope. In this data release, we propose a new delineation between the r-I and r-II stellar classes at , instead of the empirically chosen level previously in use, based on statistical tests of the complete set of RPA data released to date. We also statistically justify the minimum level of [Eu/Fe] for definition of the r-I stars, [Eu/Fe] > +0.3. Redefining the separation between r-I and r-II stars will aid in the analysis of the possible progenitors of these two classes of stars and determine whether these signatures arise from separate astrophysical sources at all. Applying this redefinition to previous RPA data, the number of identified r-II and r-I stars changes to 51 and 121, respectively, from the initial set of data releases published thus far. In this data release, we identify 21 new r-II, 111 new r-I (plus 3 re-identified), and 7 new (plus 1 re-identified) limited-r stars out of a total of 232 target stars, resulting in a total sample of 72 new r-II stars, 232 new r-I stars, and 42 new limited-r stars identified by the RPA to date
    corecore