94 research outputs found

    Maximally inhomogeneous G\"{o}del-Farnsworth-Kerr generalizations

    Full text link
    It is pointed out that physically meaningful aligned Petrov type D perfect fluid space-times with constant zero-order Riemann invariants are either the homogeneous solutions found by G\"{o}del (isotropic case) and Farnsworth and Kerr (anisotropic case), or new inhomogeneous generalizations of these with non-constant rotation. The construction of the line element and the local geometric properties for the latter are presented.Comment: 4 pages, conference proceeding of Spanish Relativity Meeting (ERE 2009, Bilbao

    Petrov type D pure radiation fields of Kundt's class

    Full text link
    We present all Petrov type D pure radiation space-times, with or without cosmological constant, with a shear-free, non-diverging geodesic principal null congruence

    Purely radiative irrotational dust spacetimes

    Get PDF
    We consider irrotational dust spacetimes in the full non-linear regime which are "purely radiative" in the sense that the gravitational field satisfies the covariant transverse conditions div(H) = div(E) = 0. Within this family we show that the Bianchi class A spatially homogeneous dust models are uniquely characterised by the condition that HH is diagonal in the shear-eigenframe.Comment: 6 pages, ERE 2006 conference, minor correction

    Rotating solenoidal perfect fluids of Petrov type D

    Full text link
    We prove that aligned Petrov type D perfect fluids for which the vorticity vector is not orthogonal to the plane of repeated principal null directions and for which the magnetic part of the Weyl tensor with respect to the fluid velocity has vanishing divergence, are necessarily purely electric or locally rotationally symmetric. The LRS metrics are presented explicitly.Comment: 6 pages, no figure

    Killing spinor space-times and constant-eigenvalue Killing tensors

    Full text link
    A class of Petrov type D Killing spinor space-times is presented, having the peculiar property that their conformal representants can only admit Killing tensors with constant eigenvalues.Comment: 11 pages, submitted to CQ

    Electromagnetic and Gravitational Invariants

    Get PDF
    The curvature invariants have been subject of recent interest in the context of the experimental detection of the gravitomagnetic field, namely due to the debate concerning the notions of "extrinsic" and "intrinsic" gravitomagnetism. In this work we explore the physical meaning of the curvature invariants, dissecting their relationship with the gravitomagnetic effects

    Purely radiative perfect fluids

    Full text link
    We study `purely radiative' (div E = div H = 0) and geodesic perfect fluids with non-constant pressure and show that the Bianchi class A perfect fluids can be uniquely characterized --modulo the class of purely electric and (pseudo-)spherically symmetric universes-- as those models for which the magnetic and electric part of the Weyl tensor and the shear are simultaneously diagonalizable. For the case of constant pressure the same conclusion holds provided one also assumes that the fluid is irrotational.Comment: 12 pages, minor grammatical change

    Minimal tensors and purely electric or magnetic spacetimes of arbitrary dimension

    Get PDF
    We consider time reversal transformations to obtain twofold orthogonal splittings of any tensor on a Lorentzian space of arbitrary dimension n. Applied to the Weyl tensor of a spacetime, this leads to a definition of its electric and magnetic parts relative to an observer (i.e., a unit timelike vector field u), in any n. We study the cases where one of these parts vanishes in particular, i.e., purely electric (PE) or magnetic (PM) spacetimes. We generalize several results from four to higher dimensions and discuss new features of higher dimensions. We prove that the only permitted Weyl types are G, I_i and D, and discuss the possible relation of u with the WANDs; we provide invariant conditions that characterize PE/PM spacetimes, such as Bel-Debever criteria, or constraints on scalar invariants, and connect the PE/PM parts to the kinematic quantities of u; we present conditions under which direct product spacetimes (and certain warps) are PE/PM, which enables us to construct explicit examples. In particular, it is also shown that all static spacetimes are necessarily PE, while stationary spacetimes (e.g., spinning black holes) are in general neither PE nor PM. Ample classes of PE spacetimes exist, but PM solutions are elusive, and we prove that PM Einstein spacetimes of type D do not exist, for any n. Finally, we derive corresponding results for the electric/magnetic parts of the Riemann tensor. This also leads to first examples of PM spacetimes in higher dimensions. We also note in passing that PE/PM Weyl tensors provide examples of minimal tensors, and we make the connection hereof with the recently proved alignment theorem. This in turn sheds new light on classification of the Weyl tensors based on null alignment, providing a further invariant characterization that distinguishes the types G/I/D from the types II/III/N.Comment: 43 pages. v2: new proposition 4.10; some text reshuffled (former sec. 2 is now an appendix); references added; some footnotes cancelled, others incorporated into the main text; some typos fixed and a few more minor changes mad
    corecore