95 research outputs found
Pulmonary siRNA Delivery with Sophisticated Amphiphilic Poly(Spermine Acrylamides) for the Treatment of Lung Fibrosis
RNA interference (RNAi) is an efficient strategy to post-transcriptionally silence gene expression. While all siRNA drugs on the market target the liver, the lung offers a variety of currently undruggable targets, which can potentially be treated with RNA therapeutics. To achieve this goal, the synthesis of poly(spermine acrylamides) (P(SpAA) is reported herein. Polymers are prepared via polymerization of N-acryloxysuccinimide (NAS) and afterward this active ester is converted into spermine-based pendant groups. Copolymerizations with decylacrylamide are employed to increase the hydrophobicity of the polymers. After deprotection, polymers show excellent siRNA encapsulation to obtain perfectly sized polyplexes at very low polymer/RNA ratios. In vitro 2D and 3D cell culture, ex vivo and in vivo experiments reveal superior properties of amphiphilic spermine-copolymers with respect to delivery of siRNA to lung cells in comparison to commonly used lipid-based transfection agents. In line with the in vitro results, siRNA delivery to human lung explants confirm more efficient gene silencing of protease-activated receptor 2 (PAR2), a G protein-coupled receptor involved in fibrosis. This study reveals the importance of the balance between efficient polyplex formation, cellular uptake, gene knockdown, and toxicity for efficient siRNA delivery in vitro, in vivo, and in fibrotic human lung tissue ex vivo
Potential mechanisms underlying the acute lung dysfunction and bacterial extrapulmonary dissemination during Burkholderia cenocepacia respiratory infection
<p>Abstract</p> <p>Background</p> <p><it>Burkholderia cenocepacia</it>, an opportunistic pathogen that causes lung infections in cystic fibrosis (CF) patients, is associated with rapid and usually fatal lung deterioration due to necrotizing pneumonia and sepsis, a condition known as cepacia syndrome. The key bacterial determinants associated with this poor clinical outcome in CF patients are not clear. In this study, the cytotoxicity and procoagulant activity of <it>B. cenocepacia </it>from the ET-12 lineage, that has been linked to the cepacia syndrome, and four clinical isolates recovered from CF patients with mild clinical courses were analysed in both <it>in vitro </it>and <it>in vivo </it>assays.</p> <p>Methods</p> <p><it>B. cenocepacia-</it>infected BEAS-2B epithelial respiratory cells were used to investigate the bacterial cytotoxicity assessed by the flow cytometric detection of cell staining with propidium iodide. Bacteria-induced procoagulant activity in cell cultures was assessed by a colorimetric assay and by the flow cytometric detection of tissue factor (TF)-bearing microparticles in cell culture supernatants. Bronchoalveolar lavage fluids (BALF) from intratracheally infected mice were assessed for bacterial proinflammatory and procoagulant activities as well as for bacterial cytotoxicity, by the detection of released lactate dehydrogenase.</p> <p>Results</p> <p>ET-12 was significantly more cytotoxic to cell cultures but clinical isolates Cl-2, Cl-3 and Cl-4 exhibited also a cytotoxic profile. ET-12 and CI-2 were similarly able to generate a TF-dependent procoagulant environment in cell culture supernatant and to enhance the release of TF-bearing microparticles from infected cells. In the <it>in vivo </it>assay, all bacterial isolates disseminated from the mice lungs, but Cl-2 and Cl-4 exhibited the highest rates of recovery from mice livers. Interestingly, Cl-2 and Cl-4, together with ET-12, exhibited the highest cytotoxicity. All bacteria were similarly capable of generating a procoagulant and inflammatory environment in animal lungs.</p> <p>Conclusion</p> <p><it>B. cenocepacia </it>were shown to exhibit cytotoxic and procoagulant activities potentially implicated in bacterial dissemination into the circulation and acute pulmonary decline detected in susceptible CF patients. Improved understanding of the mechanisms accounting for <it>B. cenocepacia</it>-induced clinical decline has the potential to indicate novel therapeutic strategies to be included in the care <it>B. cenocepacia</it>-infected patients.</p
A phase I study evaluating the pharmacokinetics, safety and tolerability of an antibody-based tissue factor antagonist in subjects with acute lung injury or acute respiratory distress syndrome
<p>Abstract</p> <p>Background</p> <p>The tissue factor (TF)-dependent extrinsic pathway has been suggested to be a central mechanism by which the coagulation cascade is locally activated in the lungs of patients with acute lung injury and acute respiratory distress syndrome (ALI/ARDS) and thus represents an attractive target for therapeutic intervention. This study was designed to determine the pharmacokinetic and safety profiles of ALT-836, an anti-TF antibody, in patients with ALI/ARDS.</p> <p>Methods</p> <p>This was a prospective, randomized, placebo-controlled, dose-escalation Phase I clinical trial in adult patients who had suspected or proven infection, were receiving mechanical ventilation and had ALI/ARDS (PaO<sub>2</sub>/FiO<sub>2 </sub>≤ 300 mm). Eighteen patients (6 per cohort) were randomized in a 5:1 ratio to receive ALT-836 or placebo, and were treated within 48 hours after meeting screening criteria. Cohorts of patients were administered a single intravenously dose of 0.06, 0.08 or 0.1 mg/kg ALT-836 or placebo. Blood samples were taken for pharmacokinetic and immunogenicity measurements. Safety was assessed by adverse events, vital signs, ECGs, laboratory, coagulation and pulmonary function parameters.</p> <p>Results</p> <p>Pharmacokinetic analysis showed a dose dependent exposure to ALT-836 across the infusion range of 0.06 to 0.1 mg/kg. No anti-ALT-836 antibody response was observed in the study population during the trial. No major bleeding episodes were reported in the ALT-836 treated patients. The most frequent adverse events were anemia, observed in both placebo and ALT-836 treated patients, and ALT-836 dose dependent, self-resolved hematuria, which suggested 0.08 mg/kg as an acceptable dose level of ALT-836 in this patient population.</p> <p>Conclusions</p> <p>Overall, this study showed that ALT-836 could be safely administered to patients with sepsis-induced ALI/ARDS.</p> <p>Trial registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT01438853">NCT01438853</a></p
The Interaction of Canine Plasminogen with Streptococcus pyogenes Enolase: They Bind to One Another but What Is the Nature of the Structures Involved?
For years it has been clear that plasminogen from different sources and enolase from different sources interact strongly. What is less clear is the nature of the structures required for them to interact. This work examines the interaction between canine plasminogen (dPgn) and Streptococcus pyogenes enolase (Str enolase) using analytical ultracentrifugation (AUC), surface plasmon resonance (SPR), fluorescence polarization, dynamic light scattering (DLS), isothermal titration calorimetry (ITC), and simple pull-down reactions. Overall, our data indicate that a non-native structure of the octameric Str enolase (monomers or multimers) is an important determinant of its surface-mediated interaction with host plasminogen. Interestingly, a non-native structure of plasminogen is capable of interacting with native enolase. As far as we can tell, the native structures resist forming stable mixed complexes
Targeting TMEM16A to reverse vasoconstriction and remodelling in idiopathic PAH
Our systematic analysis of anion channels and transporters in idiopathic pulmonary arterial hypertension (IPAH) showed marked upregulation of the Cl- channel TMEM16A gene.We hypothesised that TMEM16A overexpression might represent a novel vicious circle in the molecular pathways causing PAH.We investigated healthy donor lungs (n=40) and recipient lungs with IPAH (n=38) for the expression of anion channel and transporter genes in small pulmonary arteries and pulmonary arterial smooth muscle cells (PASMC). In IPAH, TMEM16A was strongly upregulated and patch-clamp recordings confirmed an increased Cl- current in PASMC (n=9-10). These cells were depolarised and could be repolarized by TMEM16A inhibitors or knock-down experiments (n=6-10). Inhibition/knock-down of TMEM16A reduced proliferation of IPAH-PASMC (n=6). Conversely, overexpression of TMEM16A in healthy donor PASMC produced an IPAH-like phenotype. Chronic application of benzbromarone in two independent animal models significantly decreased right ventricular pressure and reversed remodelling of established PH.Our findings suggest that increased TMEM16A expression and activity comprise an important pathologic mechanism underlying vasoconstriction and remodelling of pulmonary arteries in PAH. Inhibition of TMEM16A represents a novel therapeutic approach to achieve reverse remodelling in PAH
Vibrational-rotational structure of the silane molecule in the band of v2+v4 (F2)
In recent years, extensive theoretical studies have been carried out on the silane molecule, namely their vibrational-rotational structure. In this work, we continue our research series and focus on the 28SiD4 isotopologue. The IR-spectrum of the silane molecule was recorded in the range 1250-1450 cm-1 (pentad region) on Bruker IFS 120HR Fourier interferometer. The P, Q, and R branches with Jmax up to 17 were assigned, and spectroscopic constants of the v2+v4 (F2) band were derived for 28SiD4. As a result, a set of spectroscopic parameters was obtained which describe the vibrational-rotational structure of the silane molecule close to the experimental uncertainties
The low density lipoprotein receptor-related protein (LRP) 1 and its function in lung diseases
The low density lipoprotein receptor-related
protein (LRP) 1 is a ubiquitously expressed, versatile
cell surface transmembrane receptor involved in
embryonic development and adult tissue homeostasis.
LRP1 binds and endocytoses a broad spectrum of over
40 ligands identified thus far, including lipoproteins,
extracellular matrix proteins, proteases and protease/
inhibitor complexes and growth factors. Interactions
with other membrane receptors and intracellular
adaptors/scaffolding proteins allow LRP1 to modulate
cell migration, survival, proliferation and (trans)
differentiation. Because LRP1 displays a wide-range of
interactions and activities, its expression and function is
temporally and spatially tightly controlled. It is not,
therefore, surprising that deregulation of LRP1
production and/or activity is observed in several
diseases. In this review, we will systematically examine
the evidence for the role of LRP1 in human pathologies
placing special emphasis on LRP1-mediated
pathogenesis of the lung
- …