1,077 research outputs found

    Structural analysis of the starfish SALMFamide neuropeptides S1 and S2: The N-terminal region of S2 facilitates self-association

    Get PDF
    The neuropeptides S1 (GFNSALMFamide) and S2 (SGPYSFNSGLTFamide), which share sequence similarity, were discovered in the starfish Asterias rubens and are prototypical members of the SALMFamide family of neuropeptides in echinoderms. SALMFamide neuropeptides act as muscle relaxants and both S1 and S2 cause relaxation of cardiac stomach and tube foot preparations in vitro but S2 is an order of magnitude more potent than S1. Here we investigated a structural basis for this difference in potency using spectroscopic techniques. Circular dichroism spectroscopy showed that S1 does not have a defined structure in aqueous solution and this was supported by 2D nuclear magnetic resonance experiments. In contrast, we found that S2 has a well-defined conformation in aqueous solution. However, the conformation of S2 was concentration dependent, with increasing concentration inducing a transition from an unstructured to a structured conformation. Interestingly, this property of S2 was not observed in an N-terminally truncated analogue of S2 (short S2 or SS2; SFNSGLTFamide). Collectively, the data obtained indicate that the N-terminal region of S2 facilitates peptide self-association at high concentrations, which may have relevance to the biosynthesis and/or bioactivity of S2 in vivo

    Fine Selmer Groups and Isogeny Invariance

    Full text link
    We investigate fine Selmer groups for elliptic curves and for Galois representations over a number field. More specifically, we discuss Conjecture A, which states that the fine Selmer group of an elliptic curve over the cyclotomic extension is a finitely generated Zp\mathbb{Z}_p-module. The relationship between this conjecture and Iwasawa's classical μ=0\mu=0 conjecture is clarified. We also present some partial results towards the question whether Conjecture A is invariant under isogenies.Comment: 20 page

    Rapid Identification of Hospitalized Patients at High Risk for MRSA Carriage

    Get PDF
    Patients who are asymptomatic carriers of methicillin-resistant Staphylococcus aureus (MRSA) are major reservoirs for transmission of MRSA to other patients. Medical personnel are usually not aware when these high-risk patients are hospitalized. We developed and tested an enterprise-wide electronic surveillance system to identify patients at high risk for MRSA carriage at hospital admission and during hospitalization. During a two-month study, nasal swabs from 153 high-risk patients were tested for MRSA carriage using polymerase chain reaction (PCR) of which 31 (20.3%) were positive compared to 12 of 293 (4.1%, p < 0.001) low-risk patients. The mean interval from admission to availability of PCR test results was 19.2 hours. Computer alerts for patients at high-risk of MRSA carriage were found to be reliable, timely and offer the potential to replace testing all patients. Previous MRSA colonization was the best predictor but other risk factors were needed to increase the sensitivity of the algorith

    Novel strategies to enhance vaccine immunity against coccidioidomycosis

    Get PDF
    Coccidioidomycosis is a potentially life-threatening respiratory mycosis endemic to the Americas and caused by inhalation of spores produced by the molds Coccidioides immitis and C. posadasii

    Triphasic waveforms are superior to biphasic waveforms for transthoracic defibrillation Experimental studies

    Get PDF
    AbstractObjectivesOur objective was to evaluate the efficacy of triphasic waveforms for transthoracic defibrillation in a swine model.BackgroundTriphasic shocks have been found to cause less post-shock dysfunction than biphasic shocks in chick embryo studies.MethodsAfter 30 s of electrically induced ventricular fibrillation (VF), each pig in part I (n = 32) received truncated exponential biphasic (7.2/7.2 ms) and triphasic (4.8/4.8/4.8 ms) transthoracic shocks. Each pig in part II (n = 14) received biphasic (5/5 ms) and triphasic shocks (5/5/5 ms). Three selected energy levels (50, 100, and 150 J) were tested for parts I and II. Pigs in part III (n = 13) received biphasic (5/5 ms) and triphasic (5/5/5 ms) shocks at a higher energy (200 and 300 J). Although the individual pulse durations of these shocks were equal, the energy of each pulse varied. Nine pigs in part I also received shocks where each individual pulse contained equal energy but was of a different duration (biphasic 3.3/11.1 ms; triphasic 2.0/3.2/9.2 ms).ResultsTriphasic shocks of equal duration pulses achieved higher success than biphasic shocks at delivered low energies: <40 J: 38 ± 5% triphasic vs. 19 ± 4% biphasic (p < 0.01); 40 to <50 J: 66 ± 7% vs. 42 ± 7% (p < 0.01); and 50 to <65 J: 78 ± 4% vs. 54 ± 5% (p < 0.05). Shocks of equal energy but different duration pulses achieved relatively poor success for both triphasic and biphasic waveforms. Shock-induced ventricular tachycardia (VT) and asystole occurred less often after triphasic shocks.ConclusionsTriphasic transthoracic shocks composed of equal duration pulses were superior to biphasic shocks for VF termination at low energies and caused less VT and asystole

    T helper cell subsets specific for pseudomonas aeruginosa in healthy individuals and patients with cystic fibrosis

    Get PDF
    Background: We set out to determine the magnitude of antigen-specific memory T helper cell responses to Pseudomonas aeruginosa in healthy humans and patients with cystic fibrosis. Methods: Peripheral blood human memory CD4+ T cells were co-cultured with dendritic cells that had been infected with different strains of Pseudomonas aeruginosa. The T helper response was determined by measuring proliferation, immunoassay of cytokine output, and immunostaining of intracellular cytokines. Results: Healthy individuals and patients with cystic fibrosis had robust antigen-specific memory CD4+ T cell responses to Pseudomonas aeruginosa that not only contained a Th1 and Th17 component but also Th22 cells. In contrast to previous descriptions of human Th22 cells, these Pseudomonal-specific Th22 cells lacked the skin homing markers CCR4 or CCR10, although were CCR6+. Healthy individuals and patients with cystic fibrosis had similar levels of Th22 cells, but the patient group had significantly fewer Th17 cells in peripheral blood. Conclusions: Th22 cells specific to Pseudomonas aeruginosa are induced in both healthy individuals and patients with cystic fibrosis. Along with Th17 cells, they may play an important role in the pulmonary response to this microbe in patients with cystic fibrosis and other conditions

    Synthesis and structural characterization of a mimetic membrane-anchored prion protein

    Get PDF
    During pathogenesis of transmissible spongiform encephalopathies (TSEs) an abnormal form (PrPSc) of the host encoded prion protein (PrPC) accumulates in insoluble fibrils and plaques. The two forms of PrP appear to have identical covalent structures, but differ in secondary and tertiary structure. Both PrPC and PrPSc have glycosylphospatidylinositol (GPI) anchors through which the protein is tethered to cell membranes. Membrane attachment has been suggested to play a role in the conversion of PrPC to PrPSc, but the majority of in vitro studies of the function, structure, folding and stability of PrP use recombinant protein lacking the GPI anchor. In order to study the effects of membranes on the structure of PrP, we synthesized a GPI anchor mimetic (GPIm), which we have covalently coupled to a genetically engineered cysteine residue at the C-terminus of recombinant PrP. The lipid anchor places the protein at the same distance from the membrane as does the naturally occurring GPI anchor. We demonstrate that PrP coupled to GPIm (PrP-GPIm) inserts into model lipid membranes and that structural information can be obtained from this membrane-anchored PrP. We show that the structure of PrP-GPIm reconstituted in phosphatidylcholine and raft membranes resembles that of PrP, without a GPI anchor, in solution. The results provide experimental evidence in support of previous suggestions that NMR structures of soluble, anchor-free forms of PrP represent the structure of cellular, membrane-anchored PrP. The availability of a lipid-anchored construct of PrP provides a unique model to investigate the effects of different lipid environments on the structure and conversion mechanisms of PrP
    • …
    corecore