74 research outputs found

    Complexities in the palaeoenvironmental and archaeological interpretation of isotopic analyses of the Mud Shell Geloina erosa (Lightfoot, 1786)

    Get PDF
    Isotope signals derived from molluscan shell carbonates allow researchers to investigate palaeoenvironments and the timing and periodicity of depositional events. However, it cannot be assumed that all molluscan taxa provide equally useful data owing to species-specific biological and ecological traits. The Mud Shell, Geloina erosa (Lightfoot, 1786) (syn. Polymesoda coaxans, syn. Polymesoda erosa), an infaunal mangrove bivalve, is a common component of archaeological deposits along Australia's tropical north coast and throughout the Indo-West Pacific. The ubiquity of G. erosa has led to numerous researchers incorporating this taxon into interpretations of associated deposits, particularly in the generation of radiocarbon chronologies and as a palaeoenvironmental proxy. Despite this, concerns have been expressed regarding the impact of G. erosa physiology and ecology on associated geochemical signals. Adaptations allowing the survival of this species within its highly changeable mangrove environment may introduce complexities into radiocarbon and environmental data archived within its shell. This study combines local environmental and hydrological data with isotopic analysis (δ18O, δ13C, and 14C) of live-collected specimens to explore the interpretability of geochemical proxies derived from G. erosa. Results suggest a number of factors may impact geochemical markers in unpredictable ways, eroding the usefulness of associated interpretations

    Savanna in equatorial Borneo during the late Pleistocene

    Get PDF
    Equatorial Southeast Asia is a key region for global climate change. Here, the Indo-Pacific Warm Pool (IPWP) is a critical driver of atmospheric convection that plays a dominant role in global atmospheric circulation. However, fluctuating sea-levels during the Pleistocene produced the most drastic land-sea area changes on Earth, with the now-drowned continent of Sundaland being exposed as a contiguous landmass for most of the past 2 million years. How vegetation responded to changes in rainfall that resulted from changing shelf exposure and glacial boundary conditions in Sundaland remains poorly understood. Here we use the stable carbon isotope composition (δ13C) of bat guano and High Molecular Weight n-alkanes, from Saleh Cave in southern Borneo to demonstrate that open vegetation existed during much the past 40,000 yrs BP. This location is at the southern equatorial end of a hypothesized ‘savanna corridor’ and the results provide the strongest evidence yet for its existence. The corridor would have operated as a barrier to east-west dispersal of rainforest species, and a conduit for north-south dispersal of savanna species at times of lowered sea level, explaining many modern biogeographic patterns. The Saleh Cave record also exhibits a strong correspondence with insolation and sea surface temperatures of the IPWP, suggesting a strong sensitivity of vegetation to tropical climate change on glacial/interglacial timeframes

    Indigenous impacts on north Australian savanna fire regimes over the Holocene

    Get PDF
    Fire is an essential component of tropical savannas, driving key ecological feedbacks and functions. Indigenous manipulation of fire has been practiced for tens of millennia in Australian savannas, and there is a renewed interest in understanding the effects of anthropogenic burning on savanna systems. However, separating the impacts of natural and human fire regimes on millennial timescales remains difficult. Here we show using palynological and isotope geochemical proxy records from a rare permanent water body in Northern Australia that vegetation, climate, and fire dynamics were intimately linked over the early to mid-Holocene. As the El Niño/Southern Oscillation (ENSO) intensified during the late Holocene, a decoupling occurred between fire intensity and frequency, landscape vegetation, and the source of vegetation burnt. We infer from this decoupling, that indigenous fire management began or intensified at around 3 cal kyr BP, possibly as a response to ENSO related climate variability. Indigenous fire management reduced fire intensity and targeted understory tropical grasses, enabling woody thickening to continue in a drying climate

    New sedimentary evidence reveals a unique history of C4 biomass in continental East Asia since the early Miocene

    Get PDF
    Pyrogenic carbon (PyC) and n-alkane data from sediments in the northern South China Sea reveal variations in material from C4 plants in East Asia over the last ~19 Ma. These data indicate the likely presence of C4 taxa during the earliest part of the record analysed, with C4 species also prominent during the mid and late Miocene and especially the mid Quaternary. Notably the two records diverge after the mid Quaternary, when PyC data indicate a reduced contribution of C4 taxa to biomass burning, whereas plant-derived n-alkanes indicate a greater abundance of C4 plants. This divergence likely re ects di erences in the predominant source areas of organic materials accumulating at the coring site, with PyC representing a larger source area that includes material transported in the atmosphere from more temperate (relatively cooler and drier) parts of East Asia. Variations in the relative abundances of C3 and C4 taxa appear to be linked to a combination of environmental factors that have varied temporally and geographically and that are unique to East Asia. A major expansion of C4 biomass in warmer subtropical parts of eastern Asia from ~1 Ma and particularly from ~0.4 Ma is later than other parts of the world

    Assessing the effects of a drought experiment on the reproductive phenology and ecophysiology of a wet tropical rainforest community

    Get PDF
    Climate change is expected to increase the intensity and occurrence of drought in tropical regions, potentially affecting the phenology and physiology of tree species. Phenological activity may respond to a drying and warming environment by advancing reproductive timing, and/or diminishing the production of flowers and fruits. These changes have the potential to disrupt important ecological processes, with potentially wide-ranging effects on tropical forest function. Here, we analysed the monthly flowering and fruiting phenology of a tree community (337 individuals from 30 species) over seven years in a lowland tropical rainforest in north-eastern Australia, and its response to a through fall exclusion drought experiment (TFE) that was carried out from 2016 to 2018 (three years), excluding approximately 30% of rainfall. We further examined the eco-physiological effects of the TFE on the elemental (C:N) and stable isotope (d13C and d15N) composition of leaves, and on the stable isotope composition (d13C and d18O) of stem wood of four tree species. At the community level, there was no detectable effect of the TFE on flowering activity overall but there was a significant effect recorded on fruiting and varying responses from the selected species. The reproductive phenology and physiology of the four species examined in detail were largely resistant to impacts of the TFE treatment. One canopy species in the TFE significantly increased in fruiting and flowering activity whereas one understory species decreased significantly in both. There was a significant interaction between the TFE treatment and season on leaf C:N for two species. Stable isotope responses were also variable among species, indicating species-specific responses to the TFE. Thus, we did not observe consistent patterns in physiological and phenological changes in the tree community within the three years of TFE treatment examined in this study

    Comprehensive multimodality characterization of hemodynamically significant and non-significant coronary lesions using invasive and noninvasive measures

    Get PDF
    Background There is limited knowledge about morphological molecular-imaging-derived parameters to further characterize hemodynamically relevant coronary lesions. Objective The aim of this study was to describe and differentiate specific parameters between hemodynamically significant and non-significant coronary lesions using various invasive and non-invasive measures. Methods This clinical study analyzed patients with symptoms suggestive of coronary artery disease (CAD) who underwent native T1-weighted CMR and gadofosveset-enhanced CMR as well as invasive coronary angiography. OCT of the culprit vessel to determine the plaque type was performed in a subset of patients. Functional relevance of all lesions was examined using quantitative flow reserve (QFR-angiography). Hemodynamically significant lesions were defined as lesions with a QFR <0.8. Signal intensity (contrast-to-noise ratios; CNRs) on native T1-weighted CMR and gadofosveset-enhanced CMR was defined as a measure for intraplaque hemorrhage and endothelial permeability, respectively. Results Overall 29 coronary segments from 14 patients were examined. Segments containing lesions with a QFR 0.8; n = 19) (5.32 (4.47–7.02) vs. 2.42 (1.04–5.11); p = 0.042). No differences in signal enhancement were seen on native T1-weighted CMR (2.2 (0.68–6.75) vs. 2.09 (0.91–6.57), p = 0.412). 66.7% (4 out of 6) of all vulnerable plaque and 33.3% (2 out of 6) of all non-vulnerable plaque (fibroatheroma) as assessed by OCT were hemodynamically significant lesions. Conclusion The findings of this pilot study suggest that signal enhancement on albumin-binding probe-enhanced CMR but not on T1-weighted CMR is associated with hemodynamically relevant coronary lesion

    The influence of C3 and C4 vegetation on soil organic matter dynamics in contrasting semi-natural tropical ecosystems

    Get PDF
    Variations in the carbon isotopic composition of soil organic matter (SOM) in bulk and fractionated samples were used to assess the influence of C3 and C4 vegetation on SOM dynamics in semi-natural tropical ecosystems sampled along a precipitation gradient in West Africa. Differential patterns in SOM dynamics in C3/C4 mixed ecosystems occurred at various spatial scales. Relative changes in C / N ratios between two contrasting SOM fractions were used to evaluate potential site-scale differences in SOM dynamics between C3- and C4-dominated locations. These differences were strongly controlled by soil texture across the precipitation gradient, with a function driven by bulk δ13C and sand content explaining 0.63 of the observed variability. The variation of δ13C with soil depth indicated a greater accumulation of C3-derived carbon with increasing precipitation, with this trend also being strongly dependant on soil characteristics. The influence of vegetation thickening on SOM dynamics was also assessed in two adjacent, but structurally contrasting, transitional ecosystems occurring on comparable soils to minimise the confounding effects posed by climatic and edaphic factors. Radiocarbon analyses of sand-size aggregates yielded relatively short mean residence times (τ) even in deep soil layers, while the most stable SOM fraction associated with silt and clay exhibited shorter τ in the savanna woodland than in the neighbouring forest stand. These results, together with the vertical variation observed in δ13C values, strongly suggest that both ecosystems are undergoing a rapid transition towards denser closed canopy formations. However, vegetation thickening varied in intensity at each site and exerted contrasting effects on SOM dynamics. This study shows that the interdependence between biotic and abiotic factors ultimately determine whether SOM dynamics of C3- and C4-derived vegetation are at variance in ecosystems where both vegetation types coexist. The results highlight the far-reaching implications that vegetation thickening may have for the stability of deep SOM. Â © Author(s) 2015

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Barriers and bridges: early human dispersals in equatorial SE Asia

    No full text
    Past environments of equatorial SE Asia must have played a critical role in determining the timing and trajectory of early human dispersal into and through the region. However, very few reliable terrestrial records are available with which to contextualize human dispersal events. This circumstance, coupled with a sparse archaeological record and the likelihood that much of the archaeological record is now submerged, means we have an incomplete understanding of the role that geography, climate and environment played in shaping human pre-history in this region. From a review of the literature, we conclude that there must have been a substantial environmental barrier resulting in a genetic separation between east and west Sundaland that persisted even though a terrestrial connection was present for most of the Pleistocene. This barrier is likely to be a north–south corridor of open non-forest vegetation, and its existence may have encouraged the rapid dispersal of early humans through the interior of Sundaland and on to Sahul. We conclude that more reliable terrestrial palaeoenvironmental records are required to better understand the links between past environments and dispersal events. We highlight avenues of particular research value, such as focusing on eastern Sumatra, western/southern Borneo and the islands in the Java Sea, where the purported savanna corridor most probably existed, and including edaphic factors in palaeovegetation modelling
    corecore