3,396 research outputs found
Radio continuum, far infrared and star formation
A very tight correlation was found between the radio emission and the far infrared emission from galaxies. This has been found for various samples of galaxies and is explained in terms of recent star formation. The tight correlation would imply that the total radio emission is a good tracer of star formation. The correlation between the radio power at 5 GHz and the far infrared luminosity is shown. The galaxies are of various morphological types and were selected from the various IRAS circulars, hence the sample is an infrared selected sample. The far infrared luminosities were corrected for the dust temperature. This is significant because it decreases the dispersion in the correlation
Experimental observation of the spin-Hall effect in a two dimensional spin-orbit coupled semiconductor system
We report the experimental observation of the spin-Hall effect in a
two-dimensional (2D) hole system with Rashba spin-orbit coupling.
The 2D hole layer is a part of a p-n junction light-emitting diode with a
specially designed co-planar geometry which allows an angle-resolved
polarization detection at opposite edges of the 2D hole system. In equilibrium
the angular momenta of the Rashba split heavy hole states lie in the plane of
the 2D layer. When an electric field is applied across the hole channel a non
zero out-of-plane component of the angular momentum is detected whose sign
depends on the sign of the electric field and is opposite for the two edges.
Microscopic quantum transport calculations show only a weak effect of disorder
suggesting that the clean limit spin-Hall conductance description (intrinsic
spin-Hall effect) might apply to our system.Comment: 4 pages, 3 figures, paper based on work presented at the Gordon
Research Conference on Magnetic Nano-structures (August 2004) and Oxford Kobe
Seminar on Spintronics (September 2004); accepted for publication in Physical
Review Letters December 200
Systematics of the odd-even effect in the resonance ionization of Os and Ti
Measurements of the odd-even effect in the mass spectrometric analysis of Ti and
Os isotopes by resonance ionization mass spectrometry have been performed for ΔJ = + 1, 0 and -1 transitions. Under saturating conditions of the ionization and for ΔJ = + 1 transitions odd-even
effects are reduced below the 0.5% level. Depending on the polarization state of the laser large
odd isotope enrichments are observed for ΔJ = 0 and -1 transitions which can be reduced below
the 0.5% level by depolarization of the laser field
Laser-induced isotopic selectivity in the resonance ionization of Os
Isotope selective effects in resonance ionization mass spectrometry (RIMS) pose a potentially serious limitation to the application of this technique to the precise and reproducible measurement of isotope ratios. In order to identify some of the underlying causes of isotope selectivity in RIMS and to establish procedures for minimizing these effects, we investigated laser-induced isotope selectivity in the resonance ionization of Os. A single-color, one-photon resonant ionization scheme was used for several different transitions to produce Os photoions from a thermal atomization source. Variations in Os isotope ratios were studied as a function of laser parameters such as wavelength, bandwidth, power and polarization state. Isotope selectivity is strongly dependent on laser power and wavelength, even when the bandwidth of the laser radiation is much larger than the optical isotope shift. Variations in the ^(190)Os/^(188)Os ratio of ≈20% for a detuning of 0.8 cm^(−1) were observed on a transition with a small oscillator strength. Large even—odd isotope selectivity with a 13% depletion of ^(189)Os was observed on a ΔJ = +1 transition at low laser intensity; the odd mass Os isotopes are systematically depleted. For ΔJ = −1 and 0 transitions the isotope selectivity was reduced by polarization scrambling and for strongly saturating conditions. A technique employing the wavelength dependence of even—even isotope selectivity as an internal wavelength standard was developed to permit accurate and reproducible wavelength adjustment of the laser radiation. This technique provides control over laser-induced isotope selectivity for single-color ionization and enabled us to obtain reproducible measurements of ^(192)Os/^(188)Os and ^(189)Os/^(190)Os ratios in the saturation regime for a ΔJ = +1 transition with a precision of better than 0.5%. The application of this wavelength-tuning procedure should significantly improve the quality of RIMS isotope ratio data for many elements
Systematics of isotope ratio measurements with resonant laser photoionization sources
Sources of laser-induced even-even and odd-even isotopic selectivity in the resonance ionization mass
spectroscopy of Os and Ti have been investigated experimentally for various types of transitions. A set
of conditions with regard to laser bandwidth and frequency tuning, polarization state and intensity was
obtained for which isotopic selectivity is either absent or reduced below the 2 % level
Noncontact modulation calorimetry of metallic liquids in low Earth orbit
Noncontact modulation calorimetry using electromagnetic heating and radiative heat loss under ultrahigh-vacuum conditions has been applied to levitated solid, liquid, and metastable liquid samples. This experiment requires a reduced gravity environment over an extended period of time and allows the measurement of several thermophysical properties, such as the enthalpy of fusion and crystallization, specific heat, total hemispherical emissivity, and effective thermal conductivity with high precision as a function of temperature. From the results on eutectic glass forming Zr-based alloys thermodynamic functions are obtained which describe the glass-forming ability of these alloys
- …