134,774 research outputs found

    Ultra High Energy Cosmic Rays: Strangelets? -- Extra dimensions, TeV-scale black holes and strange matter

    Get PDF
    The conjecture that ultra high energy cosmic rays (UHECRs) are actually strangelets is discussed. Besides the reason that strangelets can do as cosmic rays beyond the GZK-cutoff, another argument to support the conjecture is addressed in this letter via the study of formation of TeV-scale microscopic black holes when UHECRs bombarding bare strange stars. It is proposed that the exotic quark surface of a bare strange star could be an effective astro-laboratory in the investigations of the extra dimensions and of the detection of ultra-high energy neutrino fluxes. The flux of neutrinos (and other point-like particles) with energy >2.3 x 10^{20} eV could be expected to be smaller than 10^{-26} cm^{-2}$ s^{-1} if there are two extra spatial dimensions.Comment: accepted by Chin. Phys. Lett., or at http://vega.bac.pku.edu.cn/~rxxu/publications/index_P.ht

    Internal Energy of the Potts model on the Triangular Lattice with Two- and Three-body Interactions

    Full text link
    We calculate the internal energy of the Potts model on the triangular lattice with two- and three-body interactions at the transition point satisfying certain conditions for coupling constants. The method is a duality transformation. Therefore we have to make assumptions on uniqueness of the transition point and that the transition is of second order. These assumptions have been verified to hold by numerical simulations for q=2, 3 and 4, and our results for the internal energy are expected to be exact in these cases.Comment: 9 pages, 4 figure

    On the duality relation for correlation functions of the Potts model

    Full text link
    We prove a recent conjecture on the duality relation for correlation functions of the Potts model for boundary spins of a planar lattice. Specifically, we deduce the explicit expression for the duality of the n-site correlation functions, and establish sum rule identities in the form of the M\"obius inversion of a partially ordered set. The strategy of the proof is by first formulating the problem for the more general chiral Potts model. The extension of our consideration to the many-component Potts models is also given.Comment: 17 pages in RevTex, 5 figures, submitted to J. Phys.

    New critical frontiers for the Potts and percolation models

    Full text link
    We obtain the critical threshold for a host of Potts and percolation models on lattices having a structure which permits a duality consideration. The consideration generalizes the recently obtained thresholds of Scullard and Ziff for bond and site percolation on the martini and related lattices to the Potts model and to other lattices.Comment: 9 pages, 5 figure

    On the Throughput of Channels that Wear Out

    Full text link
    This work investigates the fundamental limits of communication over a noisy discrete memoryless channel that wears out, in the sense of signal-dependent catastrophic failure. In particular, we consider a channel that starts as a memoryless binary-input channel and when the number of transmitted ones causes a sufficient amount of damage, the channel ceases to convey signals. Constant composition codes are adopted to obtain an achievability bound and the left-concave right-convex inequality is then refined to obtain a converse bound on the log-volume throughput for channels that wear out. Since infinite blocklength codes will always wear out the channel for any finite threshold of failure and therefore cannot convey information at positive rates, we analyze the performance of finite blocklength codes to determine the maximum expected transmission volume at a given level of average error probability. We show that this maximization problem has a recursive form and can be solved by dynamic programming. Numerical results demonstrate that a sequence of block codes is preferred to a single block code for streaming sources.Comment: 23 pages, 1 table, 11 figures, submitted to IEEE Transactions on Communication

    Holographic Dark Energy Characterized by the Total Comoving Horizon and Insights to Cosmological Constant and Coincidence Problem

    Full text link
    The observed acceleration of the present universe is shown to be well explained by the holographic dark energy characterized by the total comoving horizon of the universe (η\etaHDE). It is of interest to notice that the very large primordial part of the comoving horizon generated by the inflation of early universe makes the η\etaHDE behave like a cosmological constant. As a consequence, both the fine-tuning problem and the coincidence problem can reasonably be understood with the inflationary universe and holographical principle. We present a systematic analysis and obtain a consistent cosmological constraint on the η\etaHDE model based on the recent cosmological observations. It is found that the η\etaHDE model gives the best-fit result Ωm0=0.270\Omega_{m0}=0.270 (Ωde0=0.730\Omega_{de0}=0.730) and the minimal χmin2=542.915\chi^2_{min}=542.915 which is compatible with χΛCDM2=542.919\chi^2_{\Lambda {\rm CDM}}=542.919 for the Λ\LambdaCDM model.Comment: 17 pages, 4 figures, two eqs. (26)(27) added for the consistent approximate solution of dark energy in early universe, references added, published version in PR

    Basis-conjugating automorphisms of a free group and associated Lie algebras

    Get PDF
    Let F_n = denote the free group with generators {x_1,...,x_n}. Nielsen and Magnus described generators for the kernel of the canonical epimorphism from the automorphism group of F_n to the general linear group over the integers. In particular among them are the automorphisms chi_{k,i} which conjugate the generator x_k by the generator x_i leaving the x_j fixed for j not k. A computation of the cohomology ring as well as the Lie algebra obtained from the descending central series of the group generated by chi_{k,i} for i<k is given here. Partial results are obtained for the group generated by all chi_{k,i}.Comment: This is the version published by Geometry & Topology Monographs on 22 February 200
    • …
    corecore