3 research outputs found

    The vertical influence of temperature and precipitation on snow cover variability in the Central Tianshan Mountains, Northwest China

    Get PDF
    Seasonal snow cover in mountainous regions will affect local climate and hydrology. In this study, we assessed the role of altitude in determining the relative importance of temperature and precipitation in snow cover variability in the Central Tianshan Mountains. The results show that: (1) in the study area, temperature has a greater influence on snow cover than precipitation during most of the time period studied and in most altitudes. (2) In the high‐elevation area, there is a threshold altitude of 3900±400 m, below which temperature is negatively while precipitation is positively correlated to snow cover, above which the situation is the opposite. Besides, this threshold altitude decreases from snow accumulated period to snow stable period and then increases from snowmelt period to snow‐free period. (3) Below 2000 m, there is another threshold altitude of 1400±100 m during the snow stable period, below (above) which precipitation (temperature) is the main driver of snow cover

    Bichromatic Imaging with Hemicyanine Fluorophores Enables Simultaneous Visualization of Non-alcoholic Fatty Liver Disease and Metastatic Intestinal Cancer

    No full text
    Simultaneous detection of different diseases via a single fluorophore is challenging. We herein report a bichromatic fluorophore named Cy-914 for the simultaneous diagnosis of non-alcoholic fatty liver disease (NAFLD) and metastatic intestinal cancer by leveraging its NIR-I/NIR-II dual-color imaging capability. Cy-914 with a pKa of 6.98 exhibits high sensitivity to pH and viscosity, showing turn-on NIR-I fluorescence at 795 nm in an acidic tumor microenvironment, meanwhile displaying intense NIR-II fluorescence at 914/1030 nm under neutral to slightly basic viscous conditions. Notably, Cy-914 could sensitively and noninvasively monitor viscosity variations in the progression of NAFLD. More importantly, it was able to simultaneously visualize NAFLD (ex/em = 808/1000–1700 nm) and intestinal metastases (ex/em = 570/810–875 nm) in two independent channels without spectral cross interference after topical spraying, further improving fluorescence-guided surgery of tiny metastases less than 3 mm. This strategy may provide an understanding for developing multi-color fluorophores for multi-disease diagnosis

    An Integrated Modelling Approach for Flood Simulation in the Urbanized Qinhuai River Basin, China

    No full text
    The accurate simulation and prediction of flood response in urbanized basins remains a great challenge due to the spatial and temporal heterogeneities in land surface properties. We hereby propose an integrated modelling approach that consists of a semi-distributed conceptual hydrological model and a novel parameterization strategy. The modelling approach integrates the Xinanjiang (XAJ) model, Taihu Basin (TB) model, and Nash instantaneous unit hydrograph (IUH) into a framework. Model parameters are calibrated by optimizing their relationships with corresponding physical factors. The proposed modelling approach is applied in the Qinhuai River basin (QRB), China. The modelling approach shows satisfactory performance in flood simulation both for calibration and validation of flood events in the QRB. The approach has temporal and spatial prediction capability by using the established relationships between parameter values and physical factors. Robustness analysis reveals that the different sets of flood events used for parameter relationship calibration led to similar model performance. Numerical experiments show that impervious coverage poses strong influences on the model performance and needs to be considered in flood routing simulations for small- or medium-intensity flood events
    corecore