393 research outputs found

    Repetitive Religious Chanting Invokes Positive Emotional Schema to Counterbalance Fear: A Multi-Modal Functional and Structural MRI Study

    Get PDF
    Introduction: During hard times, religious chanting/praying is widely practiced to cope with negative or stressful emotions. While the underlying neural mechanism has not been investigated to a sufficient extent. A previous event-related potential study showed that religious chanting could significantly diminish the late-positive potential induced by negative stimuli. However, the regulatory role of subcortical brain regions, especially the amygdala, in this process remains unclear. This multi-modal MRI study aimed to further clarify the neural mechanism underlying the effectiveness of religious chanting for emotion regulation. Methodology: Twenty-one participants were recruited for a multi-modal MRI study. Their age range was 40–52 years, 11 were female and all participants had at least 1 year of experience in religious chanting. The participants were asked to view neutral/fearful pictures while practicing religious chanting (i.e., chanting the name of Buddha Amitābha), non-religious chanting (i.e., chanting the name of Santa Claus), or no chanting. A 3.0 T Philips MRI scanner was used to collect the data and SPM12 was used to analyze the imaging data. Voxel-based morphometry (VBM) was used to explore the potential hemispheric asymmetries in practitioners. Results: Compared to non-religious chanting and no chanting, higher brain activity was observed in several brain regions when participants performed religious chanting while viewing fearful images. These brain regions included the fusiform gyrus, left parietal lobule, and prefrontal cortex, as well as subcortical regions such as the amygdala, thalamus, and midbrain. Importantly, significantly more activity was observed in the left than in the right amygdala during religious chanting. VBM showed hemispheric asymmetries, mainly in the thalamus, putamen, hippocampus, amygdala, and cerebellum; areas related to skill learning and biased memory formation. Conclusion: This preliminary study showed that repetitive religious chanting may induce strong brain activity, especially in response to stimuli with negative valence. Practicing religious chanting may structurally lateralize a network of brain areas involved in biased memory formation. These functional and structural results suggest that religious chanting helps to form a positive schema to counterbalance negative emotions. Future randomized control studies are necessary to confirm the neural mechanism related to religious chanting in coping with stress and negative emotions.publishedVersio

    Entrainment of chaotic activities in brain and heart during MBSR mindfulness training

    Get PDF
    AbstractThe activities of the brain and the heart are dynamic, chaotic, and possibly intrinsically coordinated. This study aims to investigate the effect of Mindfulness-Based Stress Reduction (MBSR) program on the chaoticity of electronic activities of the brain and the heart, and to explore their potential correlation. Electroencephalogram (EEG) and electrocardiogram (ECG) were recorded at the beginning of an 8-week standard MBSR training course and after the course. EEG spectrum analysis was carried out, wavelet entropies (WE) of EEG (together with reconstructed cortical sources) and heart rate were calculated, and their correlation was investigated. We found enhancement of EEG power of alpha and beta waves and lowering of delta waves power during MBSR training state as compared to normal resting state. Wavelet entropy analysis indicated that MBSR mindfulness meditation could reduce the chaotic activities of both EEG and heart rate as a change of state. However, longitudinal change of trait may need more long-term training. For the first time, our data demonstrated that the chaotic activities of the brain and the heart became more coordinated during MBSR training, suggesting that mindfulness training may increase the entrainment between mind and body. The 3D brain regions involved in the change in mental states were identified

    Autism prevalence in China is comparable to Western prevalence.

    Get PDF
    BACKGROUND: Autism prevalence in the West is approximately 1% of school age children. Autism prevalence in China has been reported to be lower than in the West. This is likely due to at least two reasons: (1) most studies in China only included the special school population, overlooking the mainstream school population; and (2) most studies in China have not used contemporary screening and diagnostic methods. To address this, we tested total autism prevalence (mainstream and special schools) in Jilin City, and mainstream school autism prevalence in Jiamusi and Shenzhen cities. METHODS: The study included a three-step process: (1) screening; (2) clinical assessment of 'screen positives' plus controls; and (3) research diagnostic assessment of those meeting clinical threshold for concerns at step 2. Prevalence estimates per 10,000 children aged 6-10 years old were weighted for study design using diagnostic criteria applied at the research assessment stage. RESULTS: In Jilin City, 77 cases of autism were identified from a total population of 7258, equating to a prevalence of 108 per 10,000 (95% confidence interval (CI) 89, 130). In Shenzhen City: 21,420 children were screened and 35 cases of autism were identified, resulting in a mainstream prevalence of 42 per 10,000 (95% CI 20-89). In Jiamusi City, 16,358 children were screened, with 10 autism cases being identified, with a mainstream prevalence of 19 per 10,000 (95% CI 10-38). CONCLUSIONS: Results from Jilin City, where both mainstream and special school data were available, revealed a similar prevalence of autism in China to the West, at around 1%. Results from Shenzhen and Jiamusi cities, where only mainstream data were available, prevalence is also in line with Western estimates. In all three cities, new cases of autism were identified by the study in mainstream schools, reflecting current under-diagnosis. Non-significant variation across different cities is seen indicating the need to explore potential variation of autism across diverse Chinese regions with large sample sizes to achieve a fully robust national picture.XS was supported by the International Development Fund-Cambridge-CUHK Collaboration on Autism Research in Hong Kong and China during the early stage of the writing up. Then XS was supported by the University of California, Davis and the Star-Cambridge Centre for Children with Autism in China during the later stage of the writing up. SBC, CA, BA, and CB were supported by the Autism Research Trust, and the MRC. FEM is supported by the MRC (research grant: U105292687). In addition, the research was supported by the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care (CLAHRC) East of England at Cambridgeshire and Peterborough NHS Foundation Trust. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. The study also benefitted from support from the NIHR Cambridge Biomedical Research Centre

    25-hydroxyvitamin D in pregnancy and genome wide cord blood DNA methylation in two pregnancy cohorts (MoBa and ALSPAC)

    Get PDF
    The aim of the study was to investigate whether maternal mid-pregnancy 25-hydroxyvitamin D concentrations are associated with cord blood DNA methylation. DNA methylation was assessed using the Illumina HumanMethylation450 BeadChip, and maternal plasma 25-hydroxyvitamin D was measured in 819 mothers/newborn pairs participating in the Norwegian Mother and Child Cohort (MoBa) and 597 mothers/newborn pairs participating in the Avon Longitudinal Study of Parents and Children (ALSPAC). Across 473,731CpG DNA methylation sites in cord blood DNA, none were strongly associated with maternal 25-hydroxyvitamin D after adjusting for multiple tests (false discovery rate (FDR) > 0.5; 473,731 tests). A meta-analysis of the results from both cohorts, using the Fisher method for combining p-values, also did not strengthen findings (FDR > 0.2). Further exploration of a set of CpG sites in the proximity of four a priori defined candidate genes (CYP24A1, CYP27B1, CYP27A1 and CYP2R1) did not result in any associations with FDR < 0.05 (56 tests). In this large genome wide assessment of the potential influence of maternal vitamin D status on DNA methylation, we did not find any convincing associations in 1416 newborns. If true associations do exist, their identification might require much larger consortium studies, expanded genomic coverage, investigation of alternative cell types or measurements of 25-hydroxyvitamin D at different gestational time points

    CD32 is expressed on cells with transcriptionally active HIV but does not enrich for HIV DNA in resting T cells

    Get PDF
    The persistence of HIV reservoirs, including latently infected, resting CD4+ T cells, is the major obstacle to cure HIV infection. CD32a expression was recently reported to mark CD4+ T cells harboring a replication-competent HIV reservoir during antiretroviral therapy (ART) suppression. We aimed to determine whether CD32 expression marks HIV latently or transcriptionally active infected CD4+ T cells. Using peripheral blood and lymphoid tissue of ART-treated HIV+ or SIV+ subjects, we found that most of the circulating memory CD32+ CD4+ T cells expressed markers of activation, including CD69, HLA-DR, CD25, CD38, and Ki67, and bore a TH2 phenotype as defined by CXCR3, CCR4, and CCR6. CD32 expression did not selectively enrich for HIV- or SIV-infected CD4+ T cells in peripheral blood or lymphoid tissue; isolated CD32+ resting CD4+ T cells accounted for less than 3% of the total HIV DNA in CD4+ T cells. Cell-associated HIV DNA and RNA loads in CD4+ T cells positively correlated with the frequency of CD32+ CD69+ CD4+ T cells but not with CD32 expression on resting CD4+ T cells. Using RNA fluorescence in situ hybridization, CD32 coexpression with HIV RNA or p24 was detected after in vitro HIV infection (peripheral blood mononuclear cell and tissue) and in vivo within lymph node tissue from HIV-infected individuals. Together, these results indicate that CD32 is not a marker of resting CD4+ T cells or of enriched HIV DNA–positive cells after ART; rather, CD32 is predominately expressed on a subset of activated CD4+ T cells enriched for transcriptionally active HIV after long-term ART

    DNA Methylation Score as a Biomarker in Newborns for Sustained Maternal Smoking during Pregnancy

    Get PDF
    Background: Maternal smoking during pregnancy, especially when sustained, leads to numerous adverse health outcomes in offspring. Pregnant women disproportionately underreport smoking and smokers tend to have lower follow-up rates to repeat questionnaires. Missing, incomplete, or inaccurate data on presence and duration of smoking in pregnancy impairs identification of novel health effects and limits adjustment for smoking in studies of other pregnancy exposures. An objective biomarker in newborns of maternal smoking during pregnancy would be valuable. Objectives: We developed a biomarker of sustained maternal smoking in pregnancy using common DNA methylation platforms. Methods: Using a dimension reduction method, we developed and tested a numeric score in newborns to reflect sustained maternal smoking in pregnancy from data on cotinine, a short-term smoking biomarker measured mid-pregnancy, and Illumina450K cord blood DNA methylation from newborns in the Norwegian Mother and Child Cohort Study (MoBa). Results: This score reliably predicted smoking status in the training set (n = 1,057; accuracy = 96%, sensitivity = 80%, specificity = 98%). Sensitivity (58%) was predictably lower in the much smaller test set (n = 221), but accuracy (91%) and specificity (97%) remained high. Reduced birth weight, a well-known effect of maternal smoking, was as strongly related to the score as to cotinine. A three-site score had lower, but acceptable, performance (accuracytrain = 82%, accuracytest = 83%). Conclusions: Our smoking methylation score represents a promising novel biomarker of sustained maternal smoking during pregnancy easily calculated with Illumina450K or IlluminaEPIC data. It may help identify novel health impacts and improve adjustment for smoking when studying other risk factors with more subtle effects.publishedVersio

    Toward Adaptive Trust Calibration for Level 2 Driving Automation

    Full text link
    Properly calibrated human trust is essential for successful interaction between humans and automation. However, while human trust calibration can be improved by increased automation transparency, too much transparency can overwhelm human workload. To address this tradeoff, we present a probabilistic framework using a partially observable Markov decision process (POMDP) for modeling the coupled trust-workload dynamics of human behavior in an action-automation context. We specifically consider hands-off Level 2 driving automation in a city environment involving multiple intersections where the human chooses whether or not to rely on the automation. We consider automation reliability, automation transparency, and scene complexity, along with human reliance and eye-gaze behavior, to model the dynamics of human trust and workload. We demonstrate that our model framework can appropriately vary automation transparency based on real-time human trust and workload belief estimates to achieve trust calibration.Comment: 10 pages, 8 figure

    A systematic assessment of normalization approaches for the Infinium 450K methylation platform

    Get PDF
    The Illumina Infinium HumanMethylation450 BeadChip has emerged as one of the most popular platforms for genome wide profiling of DNA methylation. While the technology is wide-spread, systematic technical biases are believed to be present in the data. For example, this array incorporates two different chemical assays, i.e., Type I and Type II probes, which exhibit different technical characteristics and potentially complicate the computational and statistical analysis. Several normalization methods have been introduced recently to adjust for possible biases. However, there is considerable debate within the field on which normalization procedure should be used and indeed whether normalization is even necessary. Yet despite the importance of the question, there has been little comprehensive comparison of normalization methods. We sought to systematically compare several popular normalization approaches using the Norwegian Mother and Child Cohort Study (MoBa) methylation data set and the technical replicates analyzed with it as a case study. We assessed both the reproducibility between technical replicates following normalization and the effect of normalization on association analysis. Results indicate that the raw data are already highly reproducible, some normalization approaches can slightly improve reproducibility, but other normalization approaches may introduce more variability into the data. Results also suggest that differences in association analysis after applying different normalizations are not large when the signal is strong, but when the signal is more modest, different normalizations can yield very different numbers of findings that meet a weaker statistical significance threshold. Overall, our work provides useful, objective assessment of the effectiveness of key normalization methods

    450K epigenome-wide scan identifies differential DNA methylation in newborns related to maternal smoking during pregnancy

    Get PDF
    Background: Epigenetic modifications, such as DNA methylation, due to in utero exposures may play a critical role in early programming for childhood and adult illness. Maternal smoking is a major risk factor for multiple adverse health outcomes in children, but the underlying mechanisms are unclear. Objective: We investigated epigenome-wide methylation in cord blood of newborns in relation to maternal smoking during pregnancy. Methods: We examined maternal plasma cotinine (an objective biomarker of smoking) measured during pregnancy in relation to DNA methylation at 473, 844 CpG sites (CpGs) in 1, 062 newborn cord blood samples from the Norwegian Mother and Child Cohort Study (MoBa) using the Infinium HumanMethylation450 BeadChip (450K). Results: We found differential DNA methylation at epigenome-wide statistical significance (p-value < 1.06 × 10–7) for 26 CpGs mapped to 10 genes. We replicated findings for CpGs in AHRR, CYP1A1, and GFI1 at strict Bonferroni-corrected statistical significance in a U.S. birth cohort. AHRR and CYP1A1 play a key role in the aryl hydrocarbon receptor signaling pathway, which mediates the detoxification of the components of tobacco smoke. GFI1 is involved in diverse developmental processes but has not previously been implicated in responses to tobacco smoke. Conclusions: We identified a set of genes with methylation changes present at birth in children whose mothers smoked during pregnancy. This is the first study of differential methylation across the genome in relation to maternal smoking during pregnancy using the 450K platform. Our findings implicate epigenetic mechanisms in the pathogenesis of the adverse health outcomes associated with this important in utero exposure.publishedVersio
    corecore