227,911 research outputs found
Dressed Qubits
Inherent gate errors can arise in quantum computation when the actual system
Hamiltonian or Hilbert space deviates from the desired one. Two important
examples we address are spin-coupled quantum dots in the presence of spin-orbit
perturbations to the Heisenberg exchange interaction, and off-resonant
transitions of a qubit embedded in a multilevel Hilbert space. We propose a
``dressed qubit'' transformation for dealing with such inherent errors. Unlike
quantum error correction, the dressed qubits method does not require additional
operations or encoding redundancy, is insenstitive to error magnitude, and
imposes no new experimental constraints.Comment: Replaced with published versio
Dynamics of entanglement in the transverse Ising model
We study the evolution of nearest-neighbor entanglement in the one
dimensional Ising model with an external transverse field. The system is
initialized as the so called "thermal ground state" of the pure Ising model. We
analyze properties of generation of entanglement for different regions of
external transverse fields. We find that the derivation of the time at which
the entanglement reaches its first maximum with respect to the reciprocal
transverse field has a minimum at the critical point. This is a new indicator
of quantum phase transition.Comment: To be published in PR
X-ray Polarization Signatures of Compton Scattering in Magnetic Cataclysmic Variables
Compton scattering within the accretion column of magnetic cataclysmic
variables (mCVs) can induce a net polarization in the X-ray emission. We
investigate this process using Monte Carlo simulations and find that
significant polarization can arise as a result of the stratified flow structure
in the shock-ionized column. We find that the degree of linear polarization can
reach levels up to ~8% for systems with high accretion rates and low
white-dwarf masses, when viewed at large inclination angles with respect to the
accretion column axis. These levels are substantially higher than previously
predicted estimates using an accretion column model with uniform density and
temperature. We also find that for systems with a relatively low-mass white
dwarf accreting at a high accretion rate, the polarization properties may be
insensitive to the magnetic field, since most of the scattering occurs at the
base of the accretion column where the density structure is determined mainly
by bremsstrahlung cooling instead of cyclotron cooling.Comment: 7 pages, 8 figures, accepted by MNRA
One-spin quantum logic gates from exchange interactions and a global magnetic field
It has been widely assumed that one-qubit gates in spin-based quantum
computers suffer from severe technical difficulties. We show that one-qubit
gates can in fact be generated using only modest and presently feasible
technological requirements. Our solution uses only global magnetic fields and
controllable Heisenberg exchange interactions, thus circumventing the need for
single-spin addressing.Comment: 4 pages, incl. 1 figure. This significantly modified version accepted
for publication in Phys. Rev. Let
Holonomic quantum computation in decoherence-free subspaces
We show how to realize, by means of non-abelian quantum holonomies, a set of
universal quantum gates acting on decoherence-free subspaces and subsystems. In
this manner we bring together the quantum coherence stabilization virtues of
decoherence-free subspaces and the fault-tolerance of all-geometric holonomic
control. We discuss the implementation of this scheme in the context of quantum
information processing using trapped ions and quantum dots.Comment: 4 pages, no figures. v2: minor changes. To appear in PR
- …