744 research outputs found

    Telenomus nizwaensis (Hymenoptera : Scelionidae), an important egg parasitoid of the pomegranate butterfly Deudorix livia Klug (Lepidoptera: Lycaenidae) in Oman

    Get PDF
    The pomegranate butterfly Deudorix (= Virachola) livia is the major pest of pomegranate, a crop of economic importance, in Oman. A species of parasitoid wasp in the hymenopteran family Scelionidae is responsible for high levels of mortality of its eggs. This wasp is described herein as Telenomus nizwaensis Polaszek sp. n., based on morphology and DNA sequence data. T. nizwaensis is currently known only from D. livia, which is also a pest of economic importance on other crops in North Africa, the Arabian Peninsula, and the Mediterranean. We summarise current knowledge of T. nizwaensis life-history and its potential to provide biological pest control.Peer reviewe

    Degradation of biological macromolecules supports uncultured microbial populations in Guaymas Basin hydrothermal sediments

    Get PDF
    © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Castro, S. P., Borton, M. A., Regan, K., de Angelis, I. H., Wrighton, K. C., Teske, A. P., Strous, M., & Ruff, S. E. Degradation of biological macromolecules supports uncultured microbial populations in Guaymas Basin hydrothermal sediments. Isme Journal. (2021), https://doi.org/10.1038/s41396-021-01026-5.Hydrothermal sediments contain large numbers of uncultured heterotrophic microbial lineages. Here, we amended Guaymas Basin sediments with proteins, polysaccharides, nucleic acids or lipids under different redox conditions and cultivated heterotrophic thermophiles with the genomic potential for macromolecule degradation. We reconstructed 20 metagenome-assembled genomes (MAGs) of uncultured lineages affiliating with known archaeal and bacterial phyla, including endospore-forming Bacilli and candidate phylum Marinisomatota. One Marinisomatota MAG had 35 different glycoside hydrolases often in multiple copies, seven extracellular CAZymes, six polysaccharide lyases, and multiple sugar transporters. This population has the potential to degrade a broad spectrum of polysaccharides including chitin, cellulose, pectin, alginate, chondroitin, and carrageenan. We also describe thermophiles affiliating with the genera Thermosyntropha, Thermovirga, and Kosmotoga with the capability to make a living on nucleic acids, lipids, or multiple macromolecule classes, respectively. Several populations seemed to lack extracellular enzyme machinery and thus likely scavenged oligo- or monomers (e.g., MAGs affiliating with Archaeoglobus) or metabolic products like hydrogen (e.g., MAGs affiliating with Thermodesulfobacterium or Desulforudaceae). The growth of methanogens or the production of methane was not observed in any condition, indicating that the tested macromolecules are not degraded into substrates for methanogenesis in hydrothermal sediments. We provide new insights into the niches, and genomes of microorganisms that actively degrade abundant necromass macromolecules under oxic, sulfate-reducing, and fermentative thermophilic conditions. These findings improve our understanding of the carbon flow across trophic levels and indicate how primary produced biomass sustains complex and productive ecosystems.We are grateful to the captain and crew of the R/V Atlantis AT37-06 as well as the crew of the human occupied vehicle Alvin for their tireless support. Sampling at Guaymas Basin was supported by NSF (OCE-1357238)

    Sulfide Generation by Dominant Halanaerobium Microorganisms in Hydraulically Fractured Shales

    Get PDF
    Hydraulic fracturing of black shale formations has greatly increased United States oil and natural gas recovery. However, the accumulation of biomass in subsurface reservoirs and pipelines is detrimental because of possible well souring, microbially induced corrosion, and pore clogging. Temporal sampling of produced fluids from a well in the Utica Shale revealed the dominance of Halanaerobium strains within the in situ microbial community and the potential for these microorganisms to catalyze thiosulfate-dependent sulfidogenesis. From these field data, we investigated biogenic sulfide production catalyzed by a Halanaerobium strain isolated from the produced fluids using proteogenomics and laboratory growth experiments. Analysis of Halanaerobium isolate genomes and reconstructed genomes from metagenomic data sets revealed the conserved presence of rhodanese-like proteins and anaerobic sulfite reductase complexes capable of converting thiosulfate to sulfide. Shotgun proteomics measurements using a Halanaerobium isolate verified that these proteins were more abundant when thiosulfate was present in the growth medium, and culture-based assays identified thiosulfate-dependent sulfide production by the same isolate. Increased production of sulfide and organic acids during the stationary growth phase suggests that fermentative Halanaerobium uses thiosulfate to remove excess reductant. These findings emphasize the potential detrimental effects that could arise from thiosulfate-reducing microorganisms in hydraulically fractured shales, which are undetected by current industry-wide corrosion diagnostics. IMPORTANCE Although thousands of wells in deep shale formations across the United States have been hydraulically fractured for oil and gas recovery, the impact of microbial metabolism within these environments is poorly understood. Our research demonstrates that dominant microbial populations in these subsurface ecosystems contain the conserved capacity for the reduction of thiosulfate to sulfide and that this process is likely occurring in the environment. Sulfide generation (also known as “souring”) is considered deleterious in the oil and gas industry because of both toxicity issues and impacts on corrosion of the subsurface infrastructure. Critically, the capacity for sulfide generation via reduction of sulfate was not detected in our data sets. Given that current industry wellhead tests for sulfidogenesis target canonical sulfate-reducing microorganisms, these data suggest that new approaches to the detection of sulfide-producing microorganisms may be necessary

    Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel: Lack of prediction by the erythromycin breath test

    Get PDF
    The CYP3A subfamily of cytochromes P450 metabolize many medications and environmental contaminants. CYP3A4 and, in 25% of patients, CYP3A5 seem to be the major CYP3A genes expressed in adult liver. Hepatic levels of CYP3A4 can be estimated by the erythromycin breath test and vary at least 10-fold among patients. CYP3A4 has also been shown to be present in small bowel where it is responsible for significant "first-pass" metabolism of orally administered substrates. However, it is not known whether there is significant interindividual variability in the intestinal expression of CYP3A4, or whether the liver and intestinal catalytic activities of CYP3A4 correlate within an individual. It is also not known whether CYP3A5 is expressed in the small intestine. To address these questions, we administered the erythromycin breath test to 20 patients and obtained biopsies from their small bowel. There was a 6-fold variation in CYP3A catalytic activity (midazolam hydroxylation), an 11-fold variation in CYP3A4 protein content, and an 8-fold variation in CYP3A4 mRNA content in intestinal biopsies. There was an excellent correlation between intestinal CYP3A4 protein level and catalytic activity (r = 0.86; p = 0.0001); however, neither parameter significantly correlated with hepatic CYP3A4 activity as measured by the erythromycin breath test result (r = 0.27; p = 0.24 and r = 0.33; p = 0.15, respectively). We also found that CYP3A5 protein was readily detectable in biopsies from 14 (70%) of the patients, indicating that CYP3A5 is commonly expressed in human small intestine

    Cyp3A gene expression in human gut epithelium

    Get PDF
    CYP3A4, a major Phase I xenobiotic metabolizing enzyme present in liver, is also present in human small bowel epithelium where it appears to catalyse significant 'first pass' metabolism of some drugs. To determine whether CYP3A4 or the related enzymes CYP3A3, CYP3A5, and CYP3A7 are present in other regions of the digestive tract, we used CYP3A-specific antibodies to examine histological sections and epithelial microsomes obtained from a human organ donor. CYP3A-related proteins were detected in epithelia throughout the digestive tract and in gastric parietal cells, in pericentral hepatocytes, and in ductular cells of the pancreas. Immunoblot analysis suggested that the major CYP3A protein present in liver, jejunum, colon, and pancreas was CYP3A4 or CYP3A3, whereas CYP3A5 was the major protein present in stomach. Both CYP3A4 and CYP3A5 mRNA were detectable in all regions of the digestive tract using the polymerase chain reaction (PCR); however, only CYP3A4 could be detected by Northern blot analysis. CYP3A7 mRNA was consistently detected only in the liver by PCR and CYP3A3 mRNA was not detected in any of the tissues. We conclude that CYP3A4 and CYP3A5 are present throughout the human digestive tract and that differences in the expression of these enzymes may account for inter-organ differences in the metabolism of CYP3 A substrates

    Down-regulation of endothelial TLR4 signalling after apo A-I gene transfer contributes to improved survival in an experimental model of lipopolysaccharide-induced inflammation

    Get PDF
    The protective effects of high-density lipoprotein (HDL) under lipopolysaccharide (LPS) conditions have been well documented. Here, we investigated whether an effect of HDL on Toll-like receptor 4 (TLR4) expression and signalling may contribute to its endothelial-protective effects and to improved survival in a mouse model of LPS-induced inflammation and lethality. HDL cholesterol increased 1.7-fold (p < 0.005) and lung endothelial TLR4 expression decreased 8.4-fold (p < 0.005) 2 weeks after apolipoprotein (apo) A-I gene transfer. Following LPS administration in apo A-I gene transfer mice, lung TLR4 and lung MyD88 mRNA expression, reflecting TLR4 signalling, were 3.0-fold (p < 0.05) and 2.1-fold (p < 0.05) lower, respectively, than in LPS control mice. Concomitantly, LPS-induced lung neutrophil infiltration, lung oedema and mortality were significantly attenuated following apo A–I transfer. In vitro, supplementation of HDL or apo A–I to human microvascular endothelial cells-1 24 h before LPS administration reduced TLR4 expression, as assessed by fluorescent-activated cell sorting, and decreased the LPS-induced MyD88 mRNA expression and NF-κB activity, independently of LPS binding. In conclusion, HDL reduces TLR4 expression and signalling in endothelial cells, which may contribute significantly to the protective effects of HDL in LPS-induced inflammation and lethality
    corecore