14,206 research outputs found
Tracing the Bipolar Outflow from Orion Source I
Using CARMA, we imaged the 87 GHz SiO v=0 J=2-1 line toward Orion-KL with
0.45 arcsec angular resolution. The maps indicate that radio source I drives a
bipolar outflow into the surrounding molecular cloud along a NE--SW axis, in
agreement with the model of Greenhill et al. (2004). The extended high velocity
outflow from Orion-KL appears to be a continuation of this compact outflow.
High velocity gas extends farthest along a NW--SE axis, suggesting that the
outflow direction changes on time scales of a few hundred years.Comment: 4 pages, 4 figures; accepted for publication in Ap J Letter
The Cooperative Participatory Evaluation of Renewable Technologies on Ecosystem Services (CORPORATES)
Publisher PD
Bottom dissipation of subinertial currents at the Atlantic zonal boundaries
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/90515/1/jgr_bbldiss_wrightetal_2012.pd
N-body Gravity and the Schroedinger Equation
We consider the problem of the motion of bodies in a self-gravitating
system in two spacetime dimensions. We point out that this system can be mapped
onto the quantum-mechanical problem of an N-body generalization of the problem
of the H molecular ion in one dimension. The canonical gravitational
N-body formalism can be extended to include electromagnetic charges. We derive
a general algorithm for solving this problem, and show how it reduces to known
results for the 2-body and 3-body systems.Comment: 15 pages, Latex, references added, typos corrected, final version
that appears in CQ
Prediction of the Aerothermodynamic Environment of the Huygens Probe
An investigation of the aerothermodynamic environment of the Huygens entry probe has been conducted. A Monte Carlo simulation of the trajectory of the probe during entry into Titan's atmosphere was performed to identify a worst-case heating rate trajectory. Flowfield and radiation transport computations were performed at points along this trajectory to obtain convective and radiative heat-transfer distributions on the probe's heat shield. This investigation identified important physical and numerical factors, including atmospheric CH4 concentration, transition to turbulence, numerical diffusion modeling, and radiation modeling, which strongly influenced the aerothermodynamic environment
Large Scale Structure Formation with Global Topological Defects. A new Formalism and its implementation by numerical simulations
We investigate cosmological structure formation seeded by topological defects
which may form during a phase transition in the early universe. First we derive
a partially new, local and gauge invariant system of perturbation equations to
treat microwave background and dark matter fluctuations induced by topological
defects or any other type of seeds. We then show that this system is well
suited for numerical analysis of structure formation by applying it to seeds
induced by fluctuations of a global scalar field. Our numerical results are
complementary to previous investigations since we use substantially different
methods. The resulting microwave background fluctuations are compatible with
older simulations. We also obtain a scale invariant spectrum of fluctuations
with about the same amplitude. However, our dark matter results yield a smaller
bias parameter compatible with on a scale of in contrast to
previous work which yielded to large bias factors. Our conclusions are thus
more positive. According to the aspects analyzed in this work, global
topological defect induced fluctuations yield viable scenarios of structure
formation and do better than standard CDM on large scales.Comment: uuencoded, compressed tar-file containing the text in LaTeX and 12
Postscript Figures, 41 page
A Century of Cosmology
In the century since Einstein's anno mirabilis of 1905, our concept of the
Universe has expanded from Kapteyn's flattened disk of stars only 10 kpc across
to an observed horizon about 30 Gpc across that is only a tiny fraction of an
immensely large inflated bubble. The expansion of our knowledge about the
Universe, both in the types of data and the sheer quantity of data, has been
just as dramatic. This talk will summarize this century of progress and our
current understanding of the cosmos.Comment: Talk presented at the "Relativistic Astrophysics and Cosmology -
Einstein's Legacy" meeting in Munich, Nov 2005. Proceedings will be published
in the Springer-Verlag "ESO Astrophysics Symposia" series. 10 pages Latex
with 2 figure
Two rapid assays for screening of patulin biodegradation
Artículo sobre distintos ensayos para comprobar la biodegradación de la patulinaThe mycotoxin patulin is produced by the blue
mould pathogen Penicillium expansum in rotting apples
during postharvest storage. Patulin is toxic to a wide range
of organisms, including humans, animals, fungi and bacteria.
Wash water from apple packing and processing
houses often harbours patulin and fungal spores, which can
contaminate the environment. Ubiquitous epiphytic yeasts,
such as Rhodosporidium kratochvilovae strain LS11 which
is a biocontrol agent of P. expansum in apples, have the
capacity to resist the toxicity of patulin and to biodegrade
it. Two non-toxic products are formed. One is desoxypatulinic
acid. The aim of the work was to develop rapid,
high-throughput bioassays for monitoring patulin degradation
in multiple samples. Escherichia coli was highly
sensitive to patulin, but insensitive to desoxypatulinic acid.
This was utilized to develop a detection test for patulin,
replacing time-consuming thin layer chromatography or
high-performance liquid chromatography. Two assays for patulin degradation were developed, one in liquid medium
and the other in semi-solid medium. Both assays allow the
contemporary screening of a large number of samples. The
liquid medium assay utilizes 96-well microtiter plates and
was optimized for using a minimum of patulin. The semisolid
medium assay has the added advantage of slowing
down the biodegradation, which allows the study and isolation
of transient degradation products. The two assays are
complementary and have several areas of utilization, from
screening a bank of microorganisms for biodegradation
ability to the study of biodegradation pathways
Effects of dalcetrapib in patients with a recent acute coronary syndrome
In observational analyses, higher levels of high-density lipoprotein (HDL) cholesterol have been associated with a lower risk of coronary heart disease events. However, whether raising HDL cholesterol levels therapeutically reduces cardiovascular risk remains uncertain. Inhibition of cholesteryl ester transfer protein (CETP) raises HDL cholesterol levels and might therefore improve cardiovascular outcomes
- …
