456 research outputs found
Current pathophysiological concepts in cerebral small vessel disease.
The association between cerebral small vessel disease (SVD) - in the form of white matter lesions, infarctions, and hemorrhages - with vascular cognitive impairment (VCI), has mostly been deduced from observational studies. Pathological conditions affecting the small vessels of the brain and leading to SVD have suggested plausible molecular mechanisms involved in vascular damage and their impact on brain function. However, much still needs to be clarified in understanding the pathophysiology of VCI, the role of neurodegenerative processes such as Alzheimer\u27s disease, and the impact of aging itself. In addition, both genetic predispositions and environmental exposures may potentiate the development of SVD and interact with normal aging to impact cognitive function and require further study. Advances in technology, in the analysis of genetic and epigenetic data, neuroimaging such as magnetic resonance imaging, and new biomarkers will help to clarify the complex factors leading to SVD and the expression of VCI
Recommended from our members
Construct Validity of Cognitive Reserve in a Multiethnic Cohort: The Northern Manhattan Study
Cognitive reserve is a hypothetical construct that has been used to inform models of cognitive aging and is presumed to be indicative of life experiences that may mitigate the effects of brain pathology. The purpose of this study was to evaluate the construct validity of cognitive reserve by examining both its convergent and its discriminant validity across three different samples of participants using structural equation modeling. The cognitive reserve variables were found to correlate highly with one another (thereby providing evidence of convergent validity), but demanding tests of discriminant validity indicated that, in two of the samples, the cognitive reserve construct was highly related to an executive functioning construct
Cerebral white matter disease and functional decline in older adults from the Northern Manhattan Study: A longitudinal cohort study
Background
Cerebral white matter hyperintensities (WMHs) on MRI are common and associated with vascular and functional outcomes. However, the relationship between WMHs and longitudinal trajectories of functional status is not well characterized. We hypothesized that whole brain WMHs are associated with functional decline independently of intervening clinical vascular events and other vascular risk factors.
Methods and findings
In the Northern Manhattan Study (NOMAS), a population-based racially/ethnically diverse prospective cohort study, 1,290 stroke-free individuals underwent brain MRI and were followed afterwards for a mean 7.3 years with annual functional assessments using the Barthel index (BI) (range 0–100) and vascular event surveillance. Whole brain white matter hyperintensity volume (WMHV) (as percentage of total cranial volume [TCV]) was standardized and treated continuously. Generalized estimating equation (GEE) models tested associations between whole brain WMHV and baseline BI and change in BI, adjusting for sociodemographic, vascular, and cognitive risk factors, as well as stroke and myocardial infarction (MI) occurring during follow-up. Mean age was 70.6 (standard deviation [SD] 9.0) years, 40% of participants were male, 66% Hispanic; mean whole brain WMHV was 0.68% (SD 0.84). In fully adjusted models, annual functional change was −1.04 BI points (−1.20, −0.88), with −0.74 additional points annually per SD whole brain WMHV increase from the mean (−0.99, −0.49). Whole brain WMHV was not associated with baseline BI, and results were similar for mobility and non-mobility BI domains and among those with baseline BI 95–100. A limitation of the study is the possibility of a healthy survivor bias, which would likely have underestimated the associations we found.
Conclusions
In this large population-based study, greater whole brain WMHV was associated with steeper annual decline in functional status over the long term, independently of risk factors, vascular events, and baseline functional status. Subclinical brain ischemic changes may be an independent marker of long-term functional decline
Physical inactivity is a strong risk factor for stroke in the oldest old: Findings from a multi-ethnic population (the Northern Manhattan Study)
Background
The fastest growing segment of the population is those age ≥80 who have the highest stroke incidence. Risk factor management is complicated by polypharmacy-related adverse events.
Aims
To characterize the impact of physical inactivity for stroke by age in a multi-ethnic prospective cohort study (NOMAS, n = 3298).
Methods
Leisure time physical activity was assessed by a validated questionnaire and our primary exposure was physical inactivity (PI). Participants were followed annually for incident stroke. We fit Cox-proportional hazard models to calculate hazard ratios and 95% confidence intervals (HR 95% CI) for the association of PI and other risk factors with risk of stroke including two-way interaction terms between the primary exposures and age (<80 vs. ≥80).
Results
The mean age was 69 ± 10.3 years and 562 (17%) were ≥80 at enrolment. PI was common in the cohort (40.8%). Over a median of 14 years, we found 391 strokes. We found a significant interaction of age ≥80 on the risk of stroke with PI (p = 0.03). In stratified models, PI versus any activity (adjusted HR 1.60, 95%CI 1.05–2.42) was associated with an increased risk of stroke among those ≥80.
Conclusion
Physical inactivity is a treatable risk factor for stroke among those older than age 80. Improving activity may reduce the risk of stroke in this segment of the population
Recommended from our members
Creatinine- versus cystatin C-based renal function assessment in the Northern Manhattan Study
Background
Accurate glomerular filtration rate estimation informs drug dosing and risk stratification. Body composition heterogeneity influences creatinine production and the precision of creatinine-based estimated glomerular filtration rate (eGFRcr) in the elderly. We compared chronic kidney disease (CKD) categorization using eGFRcr and cystatin C-based estimated GFR (eGFRcys) in an elderly, racially/ethnically diverse cohort to determine their concordance.
Methods
The Northern Manhattan Study (NOMAS) is a predominantly elderly, multi-ethnic cohort with a primary aim to study cardiovascular disease epidemiology. We included participants with concurrently measured creatinine and cystatin C. eGFRcr was calculated using the CKD-EPI 2009 equation. eGFRcys was calculated using the CKD-EPI 2012 equation. Logistic regression was used to estimate odds ratios and 95% confidence intervals of factors associated with reclassification from eGFRcr≥60ml/min/1.73m2 to eGFRcys<60ml/min/1.73m2.
Results
Participants (n = 2988, mean age 69±10yrs) were predominantly Hispanic, female, and overweight/obese. eGFRcys was lower than eGFRcr by mean 23mL/min/1.73m2. 51% of participants’ CKD status was discordant, and only 28% maintained the same CKD stage by both measures. Most participants (78%) had eGFRcr≥60mL/min/1.73m2; among these, 64% had eGFRcys65 years, obesity, current smoking, white race, and female sex.
Conclusions
In a large, multiethnic, elderly cohort, we found a highly discrepant prevalence of CKD with eGFRcys versus eGFRcr. Determining the optimal method to estimate GFR in elderly populations needs urgent further study to improve risk stratification and drug dosing
Genome-wide scan in Hispanics highlights candidate loci for brain white matter hyperintensities
Objective: To investigate genetic variants influencing white matter hyperintensities (WMHs) in the understudied Hispanic population.
Methods: Using 6.8 million single nucleotide polymorphisms (SNPs), we conducted a genome-wide association study (GWAS) to identify SNPs associated with WMH volume (WMHV) in 922 Hispanics who underwent brain MRI as a cross-section of 2 community-based cohorts in the Northern Manhattan Study and the Washington Heights–Inwood Columbia Aging Project. Multiple linear modeling with PLINK was performed to examine the additive genetic effects on ln(WMHV) after controlling for age, sex, total intracranial volume, and principal components of ancestry. Gene-based tests of association were performed using VEGAS. Replication was performed in independent samples of Europeans, African Americans, and Asians.
Results: From the SNP analysis, a total of 17 independent SNPs in 7 genes had suggestive evidence of association with WMHV in Hispanics (p < 1 × 10−5) and 5 genes from the gene-based analysis with p < 1 × 10−3. One SNP (rs9957475 in GATA6) and 1 gene (UBE2C) demonstrated evidence of association (p < 0.05) in the African American sample. Four SNPs with p < 1 × 10−5 were shown to affect binding of SPI1 using RegulomeDB.
Conclusions: This GWAS of 2 community-based Hispanic cohorts revealed several novel WMH-associated genetic variants. Further replication is needed in independent Hispanic samples to validate these suggestive associations, and fine mapping is needed to pinpoint causal variants
Atherosclerotic Plaques in the Aortic Arch and Subclinical Cerebrovascular Disease
Background and purposeAortic arch plaque (AAP) is a risk factor for ischemic stroke, but its association with subclinical cerebrovascular disease is not established. We investigated the association between AAP and subclinical cerebrovascular disease in an elderly stroke-free community-based cohort.MethodsThe CABL study (Cardiovascular Abnormalities and Brain Lesions) was designed to investigate cardiovascular predictors of silent cerebrovascular disease in the elderly. AAPs were assessed by suprasternal transthoracic echocardiography in 954 participants. Silent brain infarcts and white matter hyperintensity volume (WMHV) were assessed by brain magnetic resonance imaging. The association of AAP thickness with silent brain infarcts and WMHV was evaluated by logistic regression analysis.ResultsMean age was 71.6±9.3 years; 63% were women. AAP was present in 658 (69%) subjects. Silent brain infarcts were detected in 138 participants (14.5%). In multivariate analysis adjusted for potential confounders, AAP thickness and large AAP (≥4 mm in thickness) were significantly associated with the upper quartile of WMHV (WMHV-Q4; odds ratio =1.17; 95% confidence interval, 1.04-1.32; P=0.009 and odds ratio =1.79; 95% confidence interval, 1.40-3.09; P=0.036, respectively), but not with silent brain infarcts (odds ratio =1.08; 95% confidence interval, 0.94-1.23; P=0.265 and odds ratio =1.46; 95% confidence interval, 0.77-2.77; P=0.251, respectively).ConclusionsAortic arch atherosclerosis was associated with WMHV in a stroke-free community-based elderly cohort. This association was stronger in subjects with large plaques and independent of cardiovascular risk factors. Aortic arch assessment by transthoracic echocardiography may help identify subjects at higher risk of subclinical cerebrovascular disease, who may benefit from aggressive stroke risk factors treatment
Preclinical studies of 5-fluoro-2'-deoxycytidine and tetrahydrouridine in pediatric brain tumors.
Chemotherapies active in preclinical studies frequently fail in the clinic due to lack of efficacy, which limits progress for rare cancers since only small numbers of patients are available for clinical trials. Thus, a preclinical drug development pipeline was developed to prioritize potentially active regimens for pediatric brain tumors spanning from in vitro drug screening, through intracranial and intra-tumoral pharmacokinetics to in vivo efficacy studies. Here, as an example of the pipeline, data are presented for the combination of 5-fluoro-2'-deoxycytidine and tetrahydrouridine in three pediatric brain tumor models. The in vitro activity of nine novel therapies was tested against tumor spheres derived from faithful mouse models of Group 3 medulloblastoma, ependymoma, and choroid plexus carcinoma. Agents with the greatest in vitro potency were then subjected to a comprehensive series of in vivo pharmacokinetic (PK) and pharmacodynamic (PD) studies culminating in preclinical efficacy trials in mice harboring brain tumors. The nucleoside analog 5-fluoro-2'-deoxycytidine (FdCyd) markedly reduced the proliferation in vitro of all three brain tumor cell types at nanomolar concentrations. Detailed intracranial PK studies confirmed that systemically administered FdCyd exceeded concentrations in brain tumors necessary to inhibit tumor cell proliferation, but no tumor displayed a significant in vivo therapeutic response. Despite promising in vitro activity and in vivo PK properties, FdCyd is unlikely to be an effective treatment of pediatric brain tumors, and therefore was deprioritized for the clinic. Our comprehensive and integrated preclinical drug development pipeline should reduce the attrition of drugs in clinical trials
A Novel Strategy for Development of Recombinant Antitoxin Therapeutics Tested in a Mouse Botulism Model
Antitoxins are needed that can be produced economically with improved safety and shelf life compared to conventional antisera-based therapeutics. Here we report a practical strategy for development of simple antitoxin therapeutics with substantial advantages over currently available treatments. The therapeutic strategy employs a single recombinant ‘targeting agent’ that binds a toxin at two unique sites and a ‘clearing Ab’ that binds two epitopes present on each targeting agent. Co-administration of the targeting agent and the clearing Ab results in decoration of the toxin with up to four Abs to promote accelerated clearance. The therapeutic strategy was applied to two Botulinum neurotoxin (BoNT) serotypes and protected mice from lethality in two different intoxication models with an efficacy equivalent to conventional antitoxin serum. Targeting agents were a single recombinant protein consisting of a heterodimer of two camelid anti-BoNT heavy-chain-only Ab VH (VHH) binding domains and two E-tag epitopes. The clearing mAb was an anti-E-tag mAb. By comparing the in vivo efficacy of treatments that employed neutralizing vs. non-neutralizing agents or the presence vs. absence of clearing Ab permitted unprecedented insight into the roles of toxin neutralization and clearance in antitoxin efficacy. Surprisingly, when a post-intoxication treatment model was used, a toxin-neutralizing heterodimer agent fully protected mice from intoxication even in the absence of clearing Ab. Thus a single, easy-to-produce recombinant protein was as efficacious as polyclonal antiserum in a clinically-relevant mouse model of botulism. This strategy should have widespread application in antitoxin development and other therapies in which neutralization and/or accelerated clearance of a serum biomolecule can offer therapeutic benefit
Effect of Intensive Versus Standard Blood Pressure Control on Stroke Subtypes
In the SPRINT (Systolic Blood Pressure Intervention Trial), the number of strokes did not differ significantly by treatment group. However, stroke subtypes have heterogeneous causes that could respond differently to intensive blood pressure control. SPRINT participants (N=9361) were randomized to target systolic blood pressures of \u3c120 mm Hg (intensive treatment) compared with \u3c140 mm Hg (standard treatment). We compared incident hemorrhage, cardiac embolism, large- and small-vessel infarctions across treatment arms. Participants randomized to the intensive arm had mean systolic blood pressures of 121.4 mm Hg in the intensive arm (N=4678) and 136.2 mm Hg in the standard arm (N=4683) at one year. Sixty-nine strokes occurred in the intensive arm and 78 in the standard arm when SPRINT was stopped. The breakdown of stroke subtypes across treatment arms included hemorrhagic (intensive treatment, n=6, standard treatment, n=7) and ischemic stroke subtypes (large artery atherosclerosis: intensive treatment n=11, standard treatment, n=13; cardiac embolism: intensive treatment n=11, standard treatment n=15; small artery occlusion: intensive treatment n=8, standard treatment n=8; other ischemic stroke: intensive treatment n=3, standard treatment n=1). Fewer strokes occurred among participants without prior cardiovascular disease in the intensive (n=43) than the standard arm (n=61), but the difference did not reach predefined statistical significance level of 0.05 (P=0.09). The interaction between baseline cardiovascular risk factor status and treatment arm on stroke risk did not reach significance (P=0.05). Similar numbers of stroke subtypes occurred in the intensive BP control and standard control arms of SPRINT
- …