13 research outputs found

    Low nanogram detection of nucleotides using fast atom bombardment-mass spectrometry

    Full text link
    The effect of trimethylsilyl (TMS) derivatization on detection limits of mononucleotides in fast atom bombardment-mass spectrometry (FAB-MS) was examined. FAB-MS methods were developed to optimize sensitivity using adenosine 5'-monophosphate as a model compound and then applied to reference standards of two clinically important nucleotides: tricyclic nucleoside-5'-monophosphate (TCNMP) and 5-fluoro-2'-deoxyuridine-5'-monophosphate (FdUMP). The detection limit for the TMS derivative of TCNMP was 2.5 - 5 ng/[mu]l and less than 2.5 ng/[mu]l for FdUMP as its TMS derivative. This is greater than two orders of magnitude more sensitive than the FAB-MS analysis of the corresponding free compounds. These low detection limits for the TMS derivatives were obtained using a narrow scan range, signal averaging, detection in the negative ion mode, and 3-nitrobenzyl alcohol as the matrix. Hydrolysis of one or more of the labile TMS groups did occur, with the extent of hydrolysis being greatest in the more protic matrices.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/27979/1/0000411.pd

    Comparison of the adrenalytic activity of mitotane and a methylated homolog on normal adrenal cortex and adrenal cortical carcinoma

    Full text link
    Mitotane is an important adrenalytic drug for the treatment of adrenal cancer whose use is limited by toxicity. Reports from another laboratory indicated that a methylated homolog of Mitotane (Mitometh) tested in guinea pigs possessed comparable adrenalytic activity but was less toxic than Mitotane. This observation prompted us to undertake a comparative study of these two drugs on the basis that Mitometh may be a superior agent for the treatment of adrenal cancer. Preliminary studies in guinea pigs failed to show a significant adrenalytic effect for either Mitotane or Mitometh. Thus, we extended the study to 13 mongrel dogs weighing 12–15 kg that were treated daily with Mitometh or Mitotane (50–100 mg/kg) for 6 or 12 days. Cortisol decreased to undetectable levels and adrenocorticotropic hormone (ACTH) rose to 10 times the baseline levels within 72 h in Mitotane-treated animals. Despite the achievement of similar drug levels, Mitometh treatment in dogs failed to suppress cortisol or increase ACTH. To determine whether these differences were due to differences in bioavailability, we measured the relative concentration of Mitotane and Mitometh in homogenates of adrenal cortex obtained from Mitotane- and Mitometh-treated dogs. The adrenal concentration of Mitometh determined in Mitometh-treated dogs was 5 times higher than the concentration of Mitotane measured in Mitotane-treated animals. Whereas the adrenal glands of Mitotane-treated dogs showed hemorrhage and necrosis, the Mitometh-treated animals showed no adrenal damage. Despite the lack of adrenalytic activity, Mitometh maintained its toxicity as demonstrated by microscopic evidence of hepatic necrosis and an increase in hepatic enzymes. The adrenalytic effects of both agents was also studied in vitro using a human functioning adrenal cortical carcinoma cell line. NCI-H295. Whereas Mitotane strongly suppressed cell growth, Mitometh had a weaker effect. We conclude that Mitometh is not likely to be effective in the therapy of adrenal cancer. Moreover, the results of this study are supportive of the view that metabolic transformation of Mitotane is in some way linked to its adrenalytic action.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46925/1/280_2004_Article_BF00685036.pd
    corecore