14 research outputs found

    Influence of AlN spacer on the properties of AlGaN/AlN/GaN heterostructures

    No full text
    AlGaN/GaN heterostructures attract attention of many research groups over the last decade because of their superior properties (high mobility and saturation velocity of 2DEG) and strong capability in high frequency/power electronics and sensors applications. One of the factors which reduces the mobility of two-dimensional electron gas (2DEG) is the alloy and interface roughness scattering mechanism occurring at the heterointerface. Mathematical calculations of a wave-function of 2DEG in the channel show that theses two phenomena play an important role, due to the fact that some electrons in 2DEG can migrate into AlGaN barrier and be strongly dissipated. One of the proposed solutions against alloy scattering in the buffer layer is the use of thin AlN spacer at the heterointerface between AlGaN and GaN layers. AlN layer enhances the conduction band offset due to a polarization-induced dipole in the AlN layer, and therefore increases carrier confinement. Several Al0.18GaN0.82/AlN/GaN heterostructures with different AlN spacer layer thickness were grown by MOVPE method for studies of the Hall mobility and sheet carrier concentration of 2DEG. Hall measurements performed using Van der Pauw shown mobility maximum at nominally 1.3 nm AlN spacer thickness and almost linear dependence of sheet carrier concentration with AlN spacer thickness in the range from 0.7 to 2 nm

    Influence of high Al fraction on reactive ion etching of AlGaN/GaN heterostructures

    No full text
    In this study, the results of reactive ion etching (RIE) process of diversified Al content AlxGa1–xN/AlN/GaN/sapphire heterostructures were presented. The Al fractions of 22, 25, 31 and 36% were examined. An impact of Al content in the heterostructures on the etch rates and surface morphology was investigated. The influence of used Cl2/BCl3/Ar gas mixture with varying of BCl3 flow on the etch rate of Al0.2Ga0.8N/GaN/sapphire, surface morphology and angle of mesa slope, was discussed

    Development and Characterization of Novel Selective, Non-Basic Dopamine D-2 Receptor Antagonists for the Treatment of Schizophrenia

    No full text
    The dopamine D-2 receptor, which belongs to the family of G protein-coupled receptors (GPCR), is an important and well-validated drug target in the field of medicinal chemistry due to its wide distribution, particularly in the central nervous system, and involvement in the pathomechanism of many disorders thereof. Schizophrenia is one of the most frequent diseases associated with disorders in dopaminergic neurotransmission, and in which the D-2 receptor is the main target for the drugs used. In this work, we aimed at discovering new selective D-2 receptor antagonists with potential antipsychotic activity. Twenty-three compounds were synthesized, based on the scaffold represented by the D2AAK2 compound, which was discovered by our group. This compound is an interesting example of a D-2 receptor ligand because of its non-classical binding to this target. Radioligand binding assays and SAR analysis indicated structural modifications of D2AAK2 that are possible to maintain its activity. These findings were further rationalized using molecular modeling. Three active derivatives were identified as D-2 receptor antagonists in cAMP signaling assays, and the selected most active compound 17 was subjected to X-ray studies to investigate its stable conformation in the solid state. Finally, effects of 17 assessed in animal models confirmed its antipsychotic activity in vivo
    corecore